Đề kiểm tra 45 phút (1 tiết) - Chương I - Đại số 9

Bài Tập và lời giải

Đề kiểm tra 45 phút (1 tiết) - Đề số 1 - Chương 1 - Đại số 9

Bài 1. Tìm điều kiện để mỗi biểu thức sau có nghĩa :

a. \(A = \sqrt {{{ - 3} \over {3 - x}}} \)

b. \(B = \sqrt {x + {1 \over x}} \)

Bài 2. Tính :

a. \(M = \left( {\sqrt 2  - \sqrt {3 - \sqrt 5 } } \right)\sqrt 2  + \sqrt {20} \)

b. \(N = \left( {{{\sqrt 6  - \sqrt 2 } \over {1 - \sqrt 3 }} - {5 \over {\sqrt 5 }}} \right):{1 \over {\sqrt 5  - \sqrt 2 }}\)

Bài 3. Cho biểu thức : \(P = {{a\sqrt a } \over {\sqrt a  - 1}} + {1 \over {1 - \sqrt a }}\)   (với \(a ≥ 0\) và \(a ≠ 1)\)

a. Rút gọn biểu thức P.

b. Tính giá trị của biểu thức P tại \(a = {9 \over 4}\)

Bài 4. Tìm x, biết :

a. \(\sqrt {4{x^2} - 4x + 1}  = 3\)

b. \(3\left( {\sqrt x  + 2} \right) + 5 = 4\sqrt {4x}  + 1\)

Bài 5. Tìm x, biết : \(\sqrt {1 - 3x}  < 2\)

Xem lời giải

Đề kiểm tra 45 phút (1 tiết) - Đề số 2 - Chương 1 - Đại số 9

Bài 1. Tìm điều kiện có nghĩa của biểu thức :

a. \(A = {1 \over {\sqrt {x - 3} }}\)

b. \(B = \sqrt {x - 2}  + {1 \over {x - 2}}\)

Bài 2. Chứng minh :

a. \(2\sqrt {2 + \sqrt 3 }  = \sqrt 2  + \sqrt 6 \)

b. \(\sqrt {1 + {{\sqrt 3 } \over 2}}  = {{1 + \sqrt 3 } \over 2}\)

Bài 3. Tính :

a. \(A = \sqrt 2 \left( {\sqrt {21}  + 3} \right).\sqrt {5 - \sqrt {21} } \)

b. \(B = \sqrt 2 \left( {\sqrt 5  - 1} \right).\sqrt {3 + \sqrt 5 } \)

Bài 4. Cho biểu thức \(P = \left( {{1 \over {\sqrt x  + 1}} - {1 \over {x + \sqrt x }}} \right):{{x - \sqrt x  + 1} \over {x\sqrt x  + 1}}\,\)\(\left( {x > 0} \right)\)

a. Rút gọn biểu thức P.

b. Tìm x sao cho \(P < 0\).

Bài 5. Tìm x, biết : \(\left( {3 - 2\sqrt x } \right)\left( {2 + 3\sqrt x } \right) = 16 - 6x\)

Xem lời giải

Đề kiểm tra 45 phút (1 tiết) - Đề số 3 - Chương 1 - Đại số 9

Bài 1. Tìm điều kiện để mỗi biểu thức sau có nghĩa :

a. \(A = {1 \over {1 - \sqrt {x - 1} }}\)

b. \(B = {1 \over {\sqrt {{x^2} - 2x + 1} }}\)

Bài 2. Rút gọn :

a. \(M = \left( {4 + \sqrt 3 } \right).\sqrt {19 - 8\sqrt 3 } \)

b. \(N = {{\sqrt {8 - \sqrt {15} } } \over {\sqrt {30}  - \sqrt 2 }}\)

Bài 3. Rút gọn biểu thức : \(P = \left( {{{8 - x\sqrt x } \over {2 - \sqrt x }} + 2\sqrt x } \right).{\left( {{{2 - \sqrt x } \over {2 + \sqrt x }}} \right)^2}\,\,\,\)\(\left( {x \ge 0;x \ne 4} \right)\)

Bài 4. Tìm x, biết : \(\left( {3 - \sqrt {2x} } \right).\left( {2 - 3\sqrt {2x} } \right) = 6x - 5\,\left( * \right)\)

Bài 5. Tìm giá trị nhỏ nhất của biểu thức : \(P = \sqrt {{x^2} - 2x + 5} \)

Xem lời giải

Đề kiểm tra 45 phút (1 tiết) - Đề số 4 - Chương 1 - Đại số 9

Bài 1. Tìm điều kiện để mỗi biểu thức sau có nghĩa :

a. \(A = \sqrt {2 - 4x} \)

b. \(B = \sqrt {{{ - 3} \over {x - 1}}}  + \sqrt {{x^2} + 4} \)

Bài 2. So sánh : \(2 + \sqrt 3 \,\,va\,\,3 + \sqrt 2 \)

Bài 3. a. Rút gọn :  \(P = {{x\sqrt y  + y\sqrt x } \over {\sqrt {xy} }}:{1 \over {\sqrt x  - \sqrt y }}\,\,\,\)\(\left( {x > 0;y > 0;x \ne y} \right)\)

b. Tính P, biết \(x = \sqrt 2  - 1\,\,va\,\,y = \sqrt {9 - 4\sqrt 2 } \)

Bài 4. Tìm x, biết :

a. \(\sqrt {{x^2} + 3}  = x + 1\)

b. \(\sqrt {{x^2} + 1}  \le x + 2\)

Bài 5. Tìm giá trị lớn nhất của biểu thức : \(P = 5 - \sqrt {{x^2} - 6x + 14} \)

Xem lời giải

Đề kiểm tra 45 phút (1 tiết) - Đề số 5 - Chương 1 - Đại số 9

Bài 1. Tìm điều kiện để mỗi biểu thức sau có nghĩa :

a. \(A = \sqrt {{2 \over {x - 3}}} \)

b. \({1 \over {\sqrt x  - \sqrt y }}\)

Bài 2. Tính : \(C = \sqrt {11 - 4\sqrt 6 }  + \sqrt {11 + 4\sqrt 6 } \)

Bài 3. Rút gọn biểu thức : \(P = {{x\sqrt y  - y\sqrt x } \over {\sqrt x  - \sqrt y }}.{{x\sqrt x  + y\sqrt y } \over {x - \sqrt {xy}  + y}}\,\,\,\)\(\left( {x \ge 0;y \ge 0;x \ne y} \right)\)

Bài 4. Tìm x, biết : \(\sqrt {{x^2} - 2x + 4}  = x + 2\)

Bài 5. Tìm giá trị lớn nhất của biểu thức : \(Q = {1 \over {\sqrt {{x^2} - 4x + 5} }}\)

Xem lời giải

Đề kiểm tra 45 phút (1 tiết) - Đề số 6 - Chương 1 - Đại số 9

Bài 1. Rút gọn :

\(A = \left( {\sqrt 6  + \sqrt {10} } \right).\sqrt {4 - \sqrt {15} } \)

\(B = {{\sqrt 3  + 2} \over {\sqrt 3  - 2}} - {{\sqrt 3  - 2} \over {\sqrt 3  + 2}} + {{8\sqrt 6  - 8\sqrt 3 } \over {\sqrt 2  - 1}}\)

Bài 2. Tính : \(Q = \sqrt {\sqrt 2  + 2\sqrt {\sqrt 2  - 1} } \)\(\, + \sqrt {\sqrt 2  - 2\sqrt {\sqrt 2  - 1} } \)

Bài 3. Tìm x, biết :

a. \(\left( {2 - \sqrt x } \right)\left( {1 + \sqrt x } \right) =  - x + \sqrt 5 \)

b. \(\sqrt {{x^2} + 2x\sqrt 3  + 3}  = \sqrt 3  + x\)

Bài 4. Cho \(A = {1 \over {\sqrt x  + \sqrt {x - 1} }} - {1 \over {\sqrt x  - \sqrt {x - 1} }} - {{x\sqrt x  - x} \over {1 - \sqrt x }}\)

a. Rút gọn biểu thức A

b. Tìm giá trị của x để \(A > 0\).

Xem lời giải

Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”