Đề kiểm tra 15 phút - Đề số 2 - Bài 2 - Chương 2 - Đại số 9

Bài 1. Cho hàm số \(y = ax + 2.\) Tìm hệ số a, biết khi \(x = 1\) thì \(y = 3\).

Bài 2. Cho hàm số \(y = \left( {m - 1} \right)x + 2.\) Tìm m để hàm số đồng biến; nghịch biến trên \(\mathbb R\).

Bài 3. Chứng minh rằng : hàm số \(y = f\left( x \right) = \left( {3 - \sqrt 2 } \right)x + 2\) đồng biến trên \(\mathbb R\).

Bài 4. Cho hàm số \(y = f\left( x \right) = \left( {2 - \sqrt 2 } \right)x + 1\)

So sánh : \(f\left( {1 + \sqrt 2 } \right)\) và \(f\left( {\sqrt 2  + \sqrt 3 } \right)\)

Lời giải

Bài 1. Theo giả thiết, ta có: \(3 = a.1 + 2 ⇒ a = 1.\)

Bài 2.

– Hàm số đồng biến trên \(\mathbb R\) \(⇔ m – 1 > 0 ⇔ m > 1\)

- Hàm số nghịch biến trên \(\mathbb R\) \(⇔ m – 1 < 0 ⇔ m < 1\)

Bài 3. Với \({x_1},\,{x_2}\) bất kì thuộc \(\mathbb R\) và \({x_1}<{x_2}\). Ta có:

\(\eqalign{  & f\left( {{x_1}} \right) = \left( {3 - \sqrt 2 } \right){x_1} + 2  \cr  & f\left( {{x_2}} \right) = \left( {3 - \sqrt 2 } \right){x_2} + 2  \cr} \)

\(\Rightarrow f\left( {{x_1}} \right) - f\left( {{x_2}} \right) \)\(\,= \left( {3 - \sqrt 2 } \right)\left( {{x_1} - {x_2}} \right)\)

Vì \({x_1}<{x_2}\)

\(\eqalign{  &  \Rightarrow {x_1} - {x_2} < 0;3 - \sqrt 2  > 0  \cr  &  \Rightarrow \left( {3 - \sqrt 2 } \right)\left( {{x_1} - {x_2}} \right) < 0\cr& \Rightarrow f\left( {{x_1}} \right) < f\left( {{x_2}} \right) \cr} \)

Vậy hàm số đã cho đồng biến trên \(\mathbb R\).

Bài 4. Hàm số đã cho có hệ số \(a = 2 - \sqrt 2  > 0\) nên hàm số đồng biến trên \(\mathbb R\).

Lại có: \(1 + \sqrt 2  < \sqrt 2  + \sqrt 3  \) \(\Rightarrow f\left( {1 + \sqrt 2 } \right) < f\left( {\sqrt 2  + \sqrt 3 } \right)\)

Chú ý: Có thể tính \(f\left( {1 + \sqrt 2 } \right)\) và \(f\left( {\sqrt 2  + \sqrt 3 } \right)\) và so sánh hai số.


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”