Bài 1: Viết công thức nghiệm tổng quát và vẽ đường thẳng biểu diễn tập nghiệm của phương trình : \(2x + 0.y = 4.\)
Bài 2: Xác định một phương trình bậc nhất hai ẩn số, biết hai nghiệm là \(( 3; 5)\) và \(( 0; −2)\).
hai điểm \(( 3; 5)\) và \(( 0; −2)\).
Điểm \((0; −2)\) thuộc (d) \(=> n = −2.\) Khi đó : \(y = mx – 2.\)
Điểm \(( 3; 5)\) thuộc (d) => \(m = {7 \over 3}\)
Vậy : \(y = {7 \over 3}x - 2 \Leftrightarrow 7x - 3y - 6 = 0.\)
Bài 1: Cho hai phương trình : \(x + y = 2\) và \(x - 2y = - 1.\) Tìm một cặp số ( x; y) là nghiệm chung của hai phương trình.
Bài 2: Xác định hệ số góc và tung độ gốc của đường thẳng biểu diễn tập nghiệm của phương trình
\(3x -2y = 6.\)
Bài 3: Tìm m để cặp số \(( 1; 2)\) là nghiệm của phương trình :
\(2x + my = m + 1.\) Viết công thức nghiệm tổng quát của phương trình với m vừa tìm được.
Bài 1: Tìm k để hệ phương trình sau có nghiệm duy nhất : \(\left\{ \matrix{ kx + y = 1 \hfill \cr - x + y = 1. \hfill \cr} \right.\)
Bài 2: Giải hệ phương trình :
a)\(\left\{ \matrix{ 2x + 5y = - 13 \hfill \cr - 5x + 6y = - 23 \hfill \cr} \right.\)
b)\(\left\{ \matrix{ x + 2y = 4 \hfill \cr y - 3x = 7. \hfill \cr} \right.\)
Bài 3: Tìm m để hai đường thẳng ( d1) : \(3x + my = 3\) và ( d2) : \(mx + 3y = 3\).
song song với nhau.
Bài 4: Hai người cùng làm việc trong 15 giờ thì được \({1 \over 6}\) công việc. Nếu người thứ nhất làm một mình trong 12 giờ; người thứ hai làm trong 20 giờ thì cả hai làm được \({1 \over 5}\) công việc. Hỏi mỗi người làm riêng thì trong bao lâu sẽ làm xong.
Bài 1: Giải hệ phương trình :
a)\(\left\{ \matrix{ 2x + 3y = 4 \hfill \cr x + 2y = 5 \hfill \cr} \right.\)
b) \(\left\{ \matrix{ 2x - y = - 4 \hfill \cr 6x + y = 7. \hfill \cr} \right.\)
Bài 2: Tìm a để hệ sau có nghiệm duy nhất : \(\left\{ \matrix{ ax + y = a \hfill \cr x + ay = 1. \hfill \cr} \right.\)
Bài 3: Hai hệ phương trình sau có tương đương với nhau không ?
\(\left\{ \matrix{ 2x + y = 1 \hfill \cr 2x + y = 2 \hfill \cr} \right.\) và \(\left\{ \matrix{ x - y = 3 \hfill \cr x - y = 1. \hfill \cr} \right.\)
Bài 4: Một mảnh vườn hình chữ nhật có chu vi là \(140m\). Ba lần chiều rộng lớn hơn chiều dài là \(10m.\) Tính chiều dài và chiều rộng của mảnh vườn.
Bài 1: Giải hệ phương trình :
a)\(\left\{ \matrix{ x + y = - \sqrt 3 \hfill \cr x - \sqrt 3 y = 1 \hfill \cr} \right.\)
b) \(\left\{ \matrix{ 3x - 2y = - 13 \hfill \cr 2x + 5y = 4. \hfill \cr} \right.\)
Bài 2: Tìm \(a, b\) để đường thẳng (d): \(y = ax + b\) đi qua hai điểm \(A(2; − 3)\) và \(B(− 1; 4).\)
Bài 3: Tìm m để hệ sau vô nghiệm : \(\left\{ \matrix{ x + my = 1\,\,\,\,\,\,\,\left( 1 \right) \hfill \cr mx + y = 2m\,\,\left( 2 \right) \hfill \cr} \right.\)
Bài 4: Tổng hai số bằng 30. Hai lần số này nhỏ hơn bốn lần số kia là 12. Tìm hai số đó.
Bài 1: Giải hệ phương trình :
a)\(\left\{ \matrix{ \sqrt 2 x - \sqrt 3 y = - 1 \hfill \cr \left( {1 + \sqrt 3 } \right)x - \sqrt 2 y = \sqrt 2 \hfill \cr} \right.\)
b) \(\left\{ \matrix{ 4x - 3y = - 10 \hfill \cr {x \over 2} + {{5y} \over 4} = 2. \hfill \cr} \right.\)
Bài 2: Tìm m để hệ phương trình : \(\left\{ \matrix{ 2x - 3 = 0 \hfill \cr ax + \left( {a - 1} \right)y = {3 \over 2} \hfill \cr} \right.\) có nghiệm duy nhất.
Bài 3: Hai người cùng làm một công việc trong 7 giờ 12 phút thì xong. Nếu người thứ nhất làm trong 6 giờ, người thứ hai làm trong 3 giờ thì cả hai người làm được \({2 \over 3}\) công việc. Hỏi nếu mỗi người làm một mình thì trong bao lâu sẽ xong.
Bài 1: Giải hệ phương trình :
a)\(\left\{ \matrix{ \sqrt 3 x - \left( {1 + \sqrt 2 } \right)y = - \sqrt 3 \hfill \cr \left( {1 + \sqrt 3 } \right)x - \left( {1 + \sqrt 2 } \right)y = \sqrt 2 - \sqrt 3 \hfill \cr} \right.\)
b) \(\left\{ \matrix{ 3x - 5y = - 7 \hfill \cr 2x + 3y = 8. \hfill \cr} \right.\)
Bài 2: Tìm m, n để hai hệ phương trình sau tương đương :
\(\left\{ \matrix{ x - 3y = - 1 \hfill \cr 2x + 3y = 7 \hfill \cr} \right.\) và \(\left\{ \matrix{ 2mx + 5y = 1 \hfill \cr - 2x + ny = 4. \hfill \cr} \right.\)
Bài 3: Tìm m để hệ sau có vô số nghiệm : \(\left\{ \matrix{ mx - y = 1 \hfill \cr - x + y = - m. \hfill \cr} \right.\)
Bài 4: Một ô tô đi trên quãng đường AB với vận tốc \(50\;km/h\) rồi tiếp tục đi từ B đến C vận tốc \(45\;km/h\). Biết rằng quãng đường từ A đến C là \(165\;km/h\) và thời gian đi từ A đến B ít hơn thời gian đi từ B và C là \({1 \over 2}\) giờ. Tính thời gian ô tô đi trên hai quãng đường AB và BC.