Giải hệ phương trình sau bằng phương pháp thế (biểu diễn y theo x từ phương trình thứ hai của hệ)
\(\left\{ \matrix{4x - 5y = 3 \hfill \cr 3x - y = 16 \hfill \cr} \right.\)
Bằng minh họa hình học, hãy giải thích tại sao hệ (III) có vô số nghiệm.
\(\left( {III} \right)\left\{ \matrix{4x - 2y = - 6 \hfill \cr - 2x + y = 3 \hfill \cr} \right.\)
Giải các hệ phương trình sau bằng phương pháp thế:
a) \(\left\{\begin{matrix} x - y =3 & & \\ 3x-4y=2 & & \end{matrix}\right.\); b) \(\left\{\begin{matrix} 7x - 3y =5 & & \\ 4x+y=2 & & \end{matrix}\right.\);
c) \(\left\{\begin{matrix} x +3y =-2 & & \\ 5x-4y=11 & & \end{matrix}\right.\)
Giải các hệ phương trình sau bằng phương pháp thế:
a) \(\left\{\begin{matrix} 3x - 2y = 11 & & \\ 4x - 5y = 3& & \end{matrix}\right.\);
b) \(\left\{\begin{matrix} \dfrac{x}{2}- \dfrac{y}{3} = 1& & \\ 5x - 8y = 3& & \end{matrix}\right.\)
Giải các hệ phương trình bằng phương pháp thế:
a) \(\left\{\begin{matrix} x + y\sqrt{5} = 0& & \\ x\sqrt{5} + 3y = 1 - \sqrt{5}& & \end{matrix}\right.\);
b) \(\left\{\begin{matrix} (2 - \sqrt{3})x - 3y = 2 + 5\sqrt{3}& & \\ 4x + y = 4 -2\sqrt{3}& & \end{matrix}\right.\)
Giải hệ phương trình \(\left\{\begin{matrix} x + 3y = 1 & & \\ (a^{2} + 1)x + 6y = 2a & & \end{matrix}\right.\) trong mỗi trường hợp sau:
a) \(a = -1\); b) \(a = 0\); c) \(a = 1\).
Giải các hệ phương trình sau bằng phương pháp thế.
a) \(\left\{\begin{matrix} 3x - y = 5 & & \\ 5x + 2y = 23 & & \end{matrix}\right.\);
b) \(\left\{\begin{matrix} 3x +5y = 1 & & \\ 2x -y =-8 & & \end{matrix}\right.\);
c) \(\left\{\begin{matrix} \dfrac{x}{y} = \dfrac{2}{3}& & \\ x + y - 10 = 0 & & \end{matrix}\right.\)
Giải hệ phương trình sau bằng phương pháp thế.
a) \(\left\{\begin{matrix} x\sqrt{2}- y \sqrt{3}=1 & & \\ x + y\sqrt{3} = \sqrt{2}& & \end{matrix}\right.\);
b) \(\left\{\begin{matrix} x - 2\sqrt{2} y = \sqrt{5}& & \\ x\sqrt{2} + y = 1 - \sqrt{10}& & \end{matrix}\right.\)
c) \(\left\{\begin{matrix} (\sqrt{2}- 1)x - y = \sqrt{2}& & \\ x + (\sqrt{2}+ 1)y = 1& & \end{matrix}\right.\)
a) Xác định các hệ số \(a\) và \(b\), biết rằng hệ phương trình
\(\left\{\begin{matrix} 2x + by=-4 & & \\ bx - ay=-5& & \end{matrix}\right.\)
có nghiệm là \((1; -2)\)
b) Cũng hỏi như vậy, nếu hệ phương trình có nghiệm là \((\sqrt{2} - 1; \sqrt{2})\).
Biết rằng: Đa thức \(P(x)\) chia hết cho đa thức \(x - a\) khi và chỉ khi \(P(a) = 0\).
Hãy tìm các giá trị của \(m\) và \(n\) sao cho đa thức sau đồng thời chia hết cho \(x + 1\) và \(x - 3\):
\(P(x) = m{x^3} + (m - 2){x^2} - (3n - 5)x - 4n\)
Bài 1: Giải hệ phương trình : \(\left\{ \matrix{ x + y = 10 \hfill \cr 3x - 2y = 0. \hfill \cr} \right.\)
Bài 2: Xác đinh a, b để đồ thị hàm số \(y = ax + b\) đi qua hai điểm \(A(1; 0)\) và \(B(2; 1).\)
Bài 1: Giải hệ phương trình : \(\left\{ \matrix{ {x \over y} = {1 \over 3} \hfill \cr x + y = 12. \hfill \cr} \right.\)
Bài 2: Tìm các hệ số a, b biết rằng hệ phương trình : \(\left\{ \matrix{ ax + by = - 5 \hfill \cr bx - ay = - 5 \hfill \cr} \right.\) có nghiệm là \(( 1; − 2).\)
Bài 1: Giải hệ phương trình : \(\left\{ \matrix{ \sqrt {2x} + y = 1 \hfill \cr x - y = \sqrt 2 . \hfill \cr} \right.\)
Bài 2: Tìm các giá trị m để hệ sau có vô số nghiệm : \(\left\{ \matrix{ 3x - 2y = 6\,\,\,\,\,\,\left( 1 \right) \hfill \cr mx + y = - 3\,\,\,\,\,\left( 2 \right) \hfill \cr} \right.\)
Bài 1: Giải hệ phương trình sau :
\( \left\{ \begin{array}{l}\sqrt 2 x - \sqrt 3 y = 0\\x + \sqrt 3 y = \sqrt 2 \end{array} \right.\)
Bài 2: Tìm m để hệ phương trình sau vô nghiệm :
\(\left\{ \matrix{ x + my = 1\,\,\,\,\,\,\,\,\,\left( 1 \right) \hfill \cr mx - 3my = 2m + 3\,\,\,\,\,\left( 2 \right) \hfill \cr} \right.\)