Bài 1. Cho hàm số \( y= - {4 \over 3}x - 4\)
a. Vẽ đồ thị của hàm số trên.
b. Gọi A và B là giao điểm của đồ thị lần lượt với các trục tọa độ Ox, Oy. Tính diện tích tam giác OAB (O là gốc tọa độ).
c. Tính góc α tạo bởi đường thẳng \(y = - {4 \over 3}x - 4\) và trục Ox (làm tròn đến phút).
Bài 2. Cho hai đường thẳng : \(y = x – 1\) (d1) và \(y = -x + 3\) (d2).
a. Tìm tọa độ giao điểm M của (d1) và (d2).
b. Viết phương trình đường thẳng (d3) song song với (d1) và đi qua điểm \(N(0 ; 1)\)
c. Chứng tỏ rằng đường thẳng \(y = mx – 2m + 1\) luôn đi qua điểm M đã nói ở câu a khi m thay đổi.
Bài 1. Cho hai đường thẳng : \(y = 2x – 1\) (d1) và \(y = -x + 2\) (d2).
a. Tìm tọa độ giao điểm M của (d1) và (d2) .
b. Viết phương trình đường thẳng (d) qua M nói trên và cắt trục Oy tại điểm có tung độ bằng 4.
c. Viết phương trình đường thẳng (d’) qua gốc tọa độ O và song song với (d1)
Bài 2. Cho đường thẳng (d): \(y = ax + b \;( a ≠ 0)\)
a. Tìm a, b biết rằng phương trình đường thẳng đi qua hai điểm \(A(1; 2)\) và \(B(2; 0)\).
b. Vẽ đồ thị của hàm số \(y = ax + b\) với a, b vừa tìm được ở câu a
Bài 1. Cho hàm số \(y = (m – 1)x + 2\) có đồ thị là đường thẳng (d).
a. Tìm m biết (d) đi qua \(A(2; 1)\) và vẽ đồ thị với m vừa tìm được.
b. Viết phương trình đường thẳng (d’) qua \(M(1; 3)\) và cắt trục tung tại điểm có tung độ bằng 5. Tìm tọa độ giao điểm của (d) và (d’)
Bài 2. Cho hai đường thẳng : \(y = x – 1\) (d1) và \(y = -x + 3\) (d2)
a. Vẽ hai đường thẳng trên cùng mặt phẳng tọa độ.
b. Gọi M là giao điểm của (d1) và (d2). Viết phương trình đường thẳng qua M và O (O là gốc tọa độ).
c. Tính góc α tạo bởi (d2) và trục Ox.
Bài 1. Cho hai đường thẳng : \(y = (m – 1)x + 1\) (d1) và \(y = (2 – m)x + 2\) (d2) \((m ≠ 1, m ≠ 2)\)
a. Tìm m để hai đường thẳng song song
b. Chứng tỏ (d1) luôn đi qua 1 điểm cố định
c. Tìm m để hàm số \(y = (2 – m)x + 2\) đồng biến trên \(\mathbb R\)
d. Tìm m để (d2) qua điểm \(M(1; 2)\)
Bài 2. Cho hàm số \(y = -x + 1\)
a. Vẽ đồ thị của hàm số trên.
Từ đó suy ra đồ thị của hàm số \( y = \left| { - x + 1} \right|\)
b. Đồ thị của hàm số \(y = -x + 1\) cắt Ox, Oy lần lượt tại A và B. Tính diện tích tam giác OAB.
Bài 1. Tìm điều kiện xác định của hàm số:
a. \(y = {1 \over {x - 1}}\)
b. \(y = \sqrt {1 - x} \)
Bài 2. Chứng minh rằng hàm số \(y = f\left( x \right) = - x + 1\) nghịch biến trên \(\mathbb R\).
So sánh \(f\left( {1 - \sqrt 2 } \right)\) và \(f\left( {1 + \sqrt 2 } \right)\)
Bài 3. Cho hàm số \(y = \sqrt 2 x + 1\)
a. Vẽ đồ thị (d) của hàm số
b. Tính góc tạo bởi (d) và trục Ox (làm tròn đến phút)
c. Viết phương trình đường thẳng (d’) qua O và song song với đường thẳng \(y = \sqrt 2 x + 1\)