Ta có \(\dfrac{a}{b} = \dfrac{c}{d} \Rightarrow \dfrac{a}{c} = \dfrac{b}{d}\)
a) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{c} = \dfrac{b}{d} = \dfrac{{a + b}}{{c + d}}\)
Từ \(\dfrac{b}{d} = \dfrac{{a + b}}{{c + d}} \Rightarrow \dfrac{{a + b}}{b} = \dfrac{{c + d}}{d}\)
b) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{c} = \dfrac{b}{d} = \dfrac{{a - b}}{{c - d}}\)
Từ \(\dfrac{b}{d} = \dfrac{{a - b}}{{c - d}} \Rightarrow \dfrac{{a - b}}{b} = \dfrac{{c - d}}{d}\)
c) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{c} = \dfrac{b}{d} = \dfrac{{a + b}}{{c + d}}\)
Từ \(\dfrac{{a + b}}{{c + d}} = \dfrac{a}{c} \Rightarrow \dfrac{{a + b}}{a} = \dfrac{{c + d}}{c}\)
d) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{c} = \dfrac{b}{d} = \dfrac{{a - b}}{{c - d}}\)
Từ \(\dfrac{{a - b}}{{c - d}} = \dfrac{a}{c} \Rightarrow \dfrac{{a - b}}{a} = \dfrac{{c - d}}{c}\)
e) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{c} = \dfrac{b}{d} = \dfrac{{a + b}}{{c + d}}\)
Từ \(\dfrac{a}{c} = \dfrac{{a + b}}{{c + d}} \Rightarrow \dfrac{a}{{a + b}} = \dfrac{c}{{c + d}}\)
f) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{c} = \dfrac{b}{d} = \dfrac{{a - b}}{{c - d}}\)
Từ \(\dfrac{a}{c} = \dfrac{{a - b}}{{c - d}} \Rightarrow \dfrac{a}{{a - b}} = \dfrac{c}{{c - d}}\)