Bài 1.76 trang 40 SBT giải tích 12

Cho hàm số: \(y =  - ({m^2} + 5m){x^3} + 6m{x^2} + 6x - 5\)

a) Xác định \(m\) để hàm số đơn điệu trên \(\mathbb{R}\). Khi đó, hàm số đồng biến hay nghịch biến? Tại sao?

b) Với giá trị nào của \(m\) thì hàm số đạt cực đại tại \(x = 1\)?


Lời giải

a) Ta có: \(y' =  - 3({m^2} + 5m){x^2} + 12mx + 6\)

Hàm số đơn điệu trên \(\mathbb{R}\) khi và chỉ khi \(y'\) không đổi dấu.

Ta xét các trường hợp:

+) \({m^2} + 5m = 0 \Leftrightarrow \left[ \begin{array}{l}m = 0\\m =  - 5\end{array} \right.\)

- Với \(m = 0\) thì \(y' = 6 > 0\) nên hàm số luôn đồng biến (thỏa mãn)

- Với \(m =  - 5\) thì \(y' =  - 60x + 6\) đổi dấu khi \(x\) đi qua \(\dfrac{1}{{10}}\) nên hàm số không đơn điệu trên \(\mathbb{R}\) (loại).

+) Với \({m^2} + 5m \ne 0 \Leftrightarrow \left\{ \begin{array}{l}m \ne 0\\m \ne  - 5\end{array} \right.\).

Khi đó, \(y'\) không đổi dấu nếu \(\Delta ' = 36{m^2} + 18({m^2} + 5m) \le 0\)\( \Leftrightarrow 3{m^2} + 5m \le 0\)\( \Leftrightarrow  - \dfrac{5}{3} \le m \le 0\)

Với điều kiện đó, ta có \( - 3({m^2} + 5m) > 0\)  nên \(y' > 0\) và do đó hàm số đồng biến trên \(\mathbb{R}\).

Vậy với điều kiện  \( - \dfrac{5}{3} \le m \le 0\) thì hàm số đồng biến trên \(\mathbb{R}\).

b) Nếu hàm số đạt cực đại tại \(x = 1\) thì \(y'\left( 1 \right) = 0\)\( \Leftrightarrow  - 3{m^2} - 3m + 6 = 0\)\( \Leftrightarrow \left[ \begin{array}{l}m = 1\\m =  - 2\end{array} \right.\)

Mặt khác, \(y'' =  - 6({m^2} + 5m)x + 12m\)

+) Với \(m = 1\;\) thì \(y'' =  - 36x + 12\). Khi đó, \(y''\left( 1 \right) =  - 24 < 0\), hàm số đạt cực đại tại \(x = 1\).

+) Với \(m =  - 2\) thì \(y'' = 36x-24\). Khi đó, \(y''\left( 1 \right) = 12 > 0\), hàm số đạt cực tiểu tại \(x = 1\).

Vậy với \(m = 1\;\) thì hàm số đạt cực đại tại \(x = 1\).


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”