Đáp án A: Xét \(f\left( x \right) = 4\cos x - 5{\sin ^2}x - 3\)
TXĐ: \(D = \mathbb{R}\) là tập đối xứng.
Ta có: \(f\left( { - x} \right) = 4\cos \left( { - x} \right) - 5{\sin ^2}\left( { - x} \right) - 3\) \( = 4\cos x - 5{\sin ^2}x - 3 = f\left( x \right)\)
Do đó hàm số đã cho là hàm số chẵn.
A đúng.
Đáp án B: Đồ thị hàm số \(y = \dfrac{{3{x^2} - 2x + 5}}{{{x^2} + x - 7}}\) có hai đường TCĐ là \(x = \dfrac{{ - 1 + \sqrt {29} }}{2}\) và \(x = \dfrac{{ - 1 - \sqrt {29} }}{2}\).
B đúng.
Đáp án C: Hàm số \(y = \dfrac{{2x - 3}}{{3x + 4}}\) có \(y' = \dfrac{{17}}{{{{\left( {3x + 4} \right)}^2}}} > 0,\forall x \ne - \dfrac{4}{3}\) nên luôn đồng biến trên các khoảng \(\left( { - \infty ; - \dfrac{4}{3}} \right)\) và \(\left( { - \dfrac{4}{3}; + \infty } \right)\).
C sai.
Đáp án D: Dễ thấy hàm số liên tục tại \(x = 0\) nên ta kiểm tra \(\mathop {\lim }\limits_{x \to 0} \dfrac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}}\) có tồn tại hay không.
Ta có: \(\mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}}\)\( = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{ - 2x - 0}}{{x - 0}} = - 2\).
\(\mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}}\)\( = \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\sin \dfrac{x}{3} - 0}}{{x - 0}}\) \( = \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\sin \dfrac{x}{3}}}{x}\)\( = \mathop {\lim }\limits_{x \to {0^ - }} \left( {\dfrac{{\sin \dfrac{x}{3}}}{{\dfrac{x}{3}}}.\dfrac{1}{3}} \right) = \dfrac{1}{3}\).
Do đó \(\mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}} \ne \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}}\) nên không tồn tại đạo hàm của hàm số tại \(x = 0\).
D đúng.
Chọn C.