Bài 1.88 trang 42 SBT giải tích 12

Cho hàm số \(y = \dfrac{{x - 2}}{{x + 3}}\). Khẳng định nào sau đây là đúng?

A. Hàm số đồng biến trên từng khoảng xác định.

B. Hàm số đồng biến trên khoảng \(\left( { - \infty ; + \infty } \right)\).

C. Hàm số nghịch biến trên từng khoảng xác định.

D. Hàm số nghịch biến trên khoảng \(\left( { - \infty ; + \infty } \right)\).

Lời giải

TXĐ: \(D = \mathbb{R}\backslash \left\{ { - 3} \right\}\).

Ta có: \(y' = \dfrac{{1.3 - 1.\left( { - 2} \right)}}{{{{\left( {x + 3} \right)}^2}}}\) \( = \dfrac{5}{{{{\left( {x + 3} \right)}^2}}} > 0,\forall x \ne  - 3\)

Do đó hàm số đồng biến trên các khoảng \(\left( { - \infty ; - 3} \right)\) và \(\left( { - 3; + \infty } \right)\) hay hàm số đồng biến trên từng khoảng xác định.

Chọn A.

Chú ý:

Không được kết luận hàm số đồng biến trên \(\mathbb{R}\) hay \(\left( { - \infty ; + \infty } \right)\) vì nếu chọn \({x_1} =  - 4,{x_2} = 2\) ta thấy \({x_1} < {x_2}\) nhưng \({y_1} = 6 > 0 = {y_2}\) nên rõ ràng hàm số không đồng biến trên \(\mathbb{R}\).


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”