Bài 19 trang 96 SGK Hình học 10

Đường tròn đi qua ba điểm \(A(0; 2); B(-2; 0)\) và \(C(2; 0)\) có phương trình là:

A. \(x^2+ y^2 =8\)

B. \(x^2+ y^2+ 2x + 4 = 0\)

C. \(x^2+ y^2- 2x - 8 = 0\)                    

D. \(x^2+ y^2- 4 = 0\)

Lời giải

Phương trình đường tròn \((C) :  x^2+ y^2– 2ax – 2by + c = 0\) với \(a^2+b^2-c> 0\) đi qua ba điểm \(A(0; 2)\); \(B(-2; 0)\) và \(C(2; 0)\) nên ta có hệ:

\(\left\{ \matrix{ 4 - 4b + c = 0 \hfill \cr 4 + 4a + c = 0 \hfill \cr 4 - 4a + c = 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{ a = 0 \hfill \cr b = 0 \hfill \cr c = - 4 \hfill \cr} \right.\)

Vậy phương trình đường tròn \((C)\) là: \(x^2+ y^2- 4 = 0\)

Do đó chọn D.


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”