Bài 5 trang 93 SGK Hình học 10

Cho ba điểm \(A(4; 3), B(2; 7), C(-3; -8)\)

a) Tìm tọa độ điểm \(G\) , trực tâm \(H\) của tam giác \(ABC\).

b) Tìm \(T\) là trực tâm của đường tròn ngoại tiếp tam giác \(ABC\). Chứng minh \(T, G, H\) thẳng hàng.

c) Viết phương trình đường tròn ngoại tiếp tam giác \(ABC\).

Lời giải

Gọi \(G(x_G; \, y_G)\) là trọng tâm tam giác \(\Delta ABC.\) Khi đó ta có:

\(\eqalign{
& {x_G} = {{{x_A} + {x_B} + {x_C}} \over 3}\cr& \Rightarrow {x_G} = {{4 + 2 - 3} \over 3} = 1 \cr
& {y_G} = {{{y_A} + {y_B} + {y_C}} \over 3}\cr& \Rightarrow {y_G} = {{3 + 7 - 8} \over 3} = {2 \over 3} \cr} \)

Vậy \(G\left(1; \, \, {2 \over 3}\right)\)

Gọi \((x; y)\) là tọa độ của \(H\)

\(\eqalign{
& \overrightarrow {AH} = (x - 4; \, y - 3);\cr&\overrightarrow {BC} = ( - 5; \,  - 15) \cr
& \overrightarrow {BH} = (x - 2; \, y - 7);\cr&\overrightarrow {AC} = ( - 7; \, - 11) \cr
& \overrightarrow {AH} \bot \overrightarrow {BC}\cr& \Leftrightarrow \overrightarrow {AH} .\overrightarrow {BC} = 0 \cr
& \Leftrightarrow - 5(x - 4) - 15(y - 3) = 0 \cr&\Leftrightarrow x + y - 13 = 0 \cr
& \overrightarrow {BH} \bot \overrightarrow {AC} \cr&\Leftrightarrow \overrightarrow {BH} .\overrightarrow {AC} = 0 \cr
& \Leftrightarrow - 7(x - 2) - 11(y - 7) = 0 \cr&\Leftrightarrow 7x + 11y - 91 = 0 \cr} \)

Tọa độ điểm H là nghiệm của hệ phương trình:

\(\left\{ \matrix{ x + y - 13 = 0 \hfill \cr 7x + 11y - 91 = 0 \hfill \cr} \right. \Rightarrow H(13;0)\)

b) Tâm \(T\) của đường tròn ngoại tiếp tam giác \(ABC\) thỏa mãn điều kiện

\(TA = TB = TC \)\(⇒ TA^2= TB^2= TC^2\), cho ta:

\({\left( {x{\rm{ }}-{\rm{ }}4} \right)^2} +{\left( {y-3} \right)^2} = {\rm{ }}{\left( {x{\rm{ }}-{\rm{ }}2} \right)^2} \)\(+ {\left( {y{\rm{ }}-{\rm{ }}7} \right)^2}\)\( \Leftrightarrow {\rm{ }}x{\rm{ }}-{\rm{ }}2y{\rm{ }} + {\rm{ }}7 =0\)

\({\left( {x{\rm{ }}-{\rm{ }}4} \right)^2} +{\left( {y-3} \right)^2} = {\rm{ }}{\left( {x{\rm{ }} + {\rm{ }}3} \right)^2} \)\(+ {\rm{ }}{\left( {y +8} \right)^2}\)\( \Leftrightarrow {\rm{ }}7x{\rm{ }} + 11y +24 = 0\)

Do đó tọa độ tâm \(T\) của đường tròn ngoại tiếp tam giác \(ABC) là nghiệm của hệ:

\(\left\{ \matrix{ x - 2y + 7 = 0 \hfill \cr 7x + 11y + 24 = 0 \hfill \cr} \right. \Rightarrow T( - 5;1)\)

Ta có: \(\overrightarrow {TH}  = ( - 18;1);\overrightarrow {TG}  = (6;{-1 \over 3})\)

Ta có: \(\overrightarrow {TH}  = {3}\overrightarrow {TG} \)

Vậy ba điểm \(H, G, T\) thẳng hàng.

c) Đường tròn ngoại tiếp tam giác \(ABC\) có tâm \(T(-5; 1)\), bán kính \(R = AT = \sqrt{85}\)

\({R^2} = A{T^2} = {\left( { - 5-{\rm{ }}4} \right)^2} + {\rm{ }}{\left( {1-3} \right)^2} \)\(= 85\)

Vậy phương trình đường tròn ngoại tiếp tam giác \(ABC\) là:

\((x + 5)^2+ (y – 1)^2= 85\)


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”