Bài 21 trang 12 SGK Toán 8 tập 1

Viết các đa thức sau dưới dạng bình phương của một tổng hoặc một hiệu:

a) \(9{x^2}-6x + 1\);                           

b) \({\left( {2x{\rm{ }} + {\rm{ }}3y} \right)^2} + 2.\left( {2x + 3y} \right) + 1\).

Hãy nêu một đề bài tương tự.

\(1 + 2\left( {x + 2y} \right) + {\left( {x + 2y} \right)^2}\)

\(4{x^2}-12x + 9\)…

Lời giải

a) \(9{x^2}-6x + 1 = {\left( {3x} \right)^2}-2.3x.1 + {1^2}\) \( = {\left( {3x-1} \right)^2}\)

Hoặc

\(9{x^2}-6x + 1 = 1-6x + 9{x^2} \) \(= {1^2} - 2.1.3x + {\left( {3x} \right)^2} = {\left( {1-3x} \right)^2}\)        

b) \({\left( {2x{\rm{ }} + {\rm{ }}3y} \right)^2} + 2.\left( {2x + 3y} \right) + 1 \) \(= {\left( {2x + 3y} \right)^2} + 2.\left( {2x + 3y} \right).1 + {1^2}\)

Đặt \(A=2x+3y\); \(B=1\)

Khi đó đa thức được viết lại như sau: 

\( {\left( {2x + 3y} \right)^2} + 2.\left( {2x + 3y} \right).1 + {1^2}\) \(= {A^2} + 2AB + {B^2} = {\left( {A + B} \right)^2}\)

Hay:

\({\left( {2x{\rm{ }} + {\rm{ }}3y} \right)^2} + 2.\left( {2x + 3y} \right) + 1 \)

\(= {\left( {2x + 3y} \right)^2} + 2.\left( {2x + 3y} \right).1 + {1^2}\)

\( = {\left[ {\left( {2x{\rm{ }} + {\rm{ }}3y} \right) + 1} \right]^2} = {\left( {2x{\rm{ }} + {\rm{ }}3y + 1} \right)^2}\)


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”