Bài 37 trang 82 SGK Toán 9 tập 2

Cho đường tròn \((O)\) và hai dây \(AB\), \(AC\) bằng nhau. Trên cung nhỏ \(AC\) lấy một điểm \(M\). Gọi \(S\) là giao điểm của \(AM\) và \(BC\). Chứng minh: \(\widehat {ASC} = \widehat {MCA}.\)

Lời giải

                            

Xét đường tròn \((O)\), ta có:

\(\widehat{ASC}\) là góc có đỉnh ở ngoài đường tròn chắn cung \(MC\) và \(AB.\)

\(\Rightarrow \widehat{ASC} = \dfrac{sđ \overparen{AB}- sđ \overparen{MC}}{2}\) (1)

và \(\widehat {MCA}\) = \(\dfrac{sđ\overparen{AM}}{2}\)   (2) (góc nội tiếp chắn cung \(\overparen{AM}\))

Theo giả thiết thì: \(AB = AC => \overparen{AB}=\overparen{AC}\)  (hai dây bằng nhau căng hai cung bằng nhau).  

\(\Rightarrow sđ\overparen{AB}-sđ\overparen{MC}=sđ\overparen{AC}-sđ\overparen{MC}=sđ\overparen{AM}\)  (3)

Từ (1), (2), (3) suy ra: \(\widehat {ASC}=\widehat {MCA}.\) (đpcm)


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”