Bài 41 trang 83 SGK Toán 9 tập 2

Qua điểm \(A\) nằm bên ngoài đường tròn \((O)\) vẽ hai cát tuyến \(ABC\) và \(AMN\) sao cho hai đường thẳng \(BN\) và \(CM\) cắt nhau tại một điểm \(S\) nằm bên trong đường tròn.

Chứng minh:  \(\widehat A + \widehat {BSM} = 2\widehat {CMN}.\)

Lời giải

                         

Xét đường tròn \((O)\) có:

+) \(\widehat A\) là góc có đỉnh nằm ngoài đường tròn \((O)\) chắn cung \(CN\) và \(BM\) \(\Rightarrow \widehat A = \dfrac{sđ\overparen{CN}-sđ\overparen{BM}}{2}\)  (1)

+) \(\widehat {BSM}\) là góc có đỉnh nằm trong đường tròn \((O)\) chắn cung \(CN\) và \(BM\) \(\Rightarrow \widehat {BSM}=\dfrac{sđ\overparen{CN}+sđ\overparen{BM}}{2}\)   (2)

Cộng (1) và (2) theo vế với vế:

\(\widehat{A}\)+\(\widehat {BSM}\)\(=\dfrac{2sđ\overparen{CN}+(sđ\overparen{BM}-sđ\overparen{BM)}}{2}=sđ \overparen{CN}\)         (3)

Mà \(\widehat {CMN}\) là góc nội tiếp chắn cung \(CN\) \(\Rightarrow \widehat {CMN}=\dfrac{sđ\overparen{CN}}{2}\)           

\(\Leftrightarrow\) \(2\widehat {CMN}=sđ\overparen{CN}\).  (4) 

Từ (3) và (4) ta được:  \(\widehat A + \widehat {BSM} = 2\widehat {CMN}\) (đpcm).


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”