a) Vì \(BD\) là đường phân giác của \(\widehat {ABC}\) nên ta có:
\(\displaystyle {{AD} \over {DC}} = {{AB} \over {BC}}\) (tính chất đường phân giác của tam giác)
Áp dụng tính chất mở rộng của tỉ lệ thức ta có:
\(\displaystyle {{AD} \over {DC}} = {{AB} \over {BC}}\)
\( \Rightarrow \displaystyle {{AD} \over {AD + DC}} = {{AB} \over {AB + BC}}\)
\( \Rightarrow \displaystyle {{AD} \over {AC}} = {{AB} \over {AB + BC}}\)
Mà \(∆ ABC\) cân tại \(A\) nên \(AC = AB = 15\; (cm)\).
\( \Rightarrow \displaystyle {{AD} \over {15}} = {{15} \over {15 + 10}} \)
\( \Rightarrow \displaystyle AD = {{15.15} \over {25}} = 9\; (cm)\)
Vậy \(DC = AC - AD = 15 - 9 = 6 \;(cm)\).
b) Vì \(BE ⊥ BD\) nên \(BE\) là đường phân giác góc ngoài tại đỉnh \(B\) (tính chất hai tia phân giác của hai góc kề bù thì vuông góc)
\( \Rightarrow \displaystyle {{EC} \over {EA}} = {{BC} \over {BA}}\) (tính chất đường phân giác )
\( \Rightarrow \displaystyle {{EC} \over {EC + AC}} = {{BC} \over {BA}} \)
\(\Rightarrow EC.BA = BC\left( {EC + AC} \right)\)
\(\Rightarrow EC.BA - EC.BC = BC.AC \)
\( \Rightarrow EC\left( {BA - BC} \right) = BC.AC \)
\( \Rightarrow \displaystyle EC = {{BC.AC} \over {BA - BC}} = {{10.15} \over {15 - 10}} = 30\)\(\;(cm).\)