a) Áp dụng định lí Py-ta-go vào tam giác vuông \(ABC\), ta có:
\(B{C^2} = A{B^2} + A{C^2} = {12^2} + {16^2} \)\(\,= 400\)
\( \Rightarrow BC = 20 \;(cm)\).
Vì \(AD\) là đường phân giác của \(\widehat {BAC}\) nên ta có:
\(\displaystyle {{DB} \over {DC}} = {{AB} \over {AC}}\) (tính chất đường phân giác của tam giác)
Áp dụng tính chất mở rộng của tỉ lệ thức ta có:
\(\displaystyle {{DB} \over {DC}} = {{AB} \over {AC}}\)
\( \Rightarrow \displaystyle {{DB} \over {DB + DC}} = {{AB} \over {AB + AC}}\)
\( \Rightarrow \displaystyle {{DB} \over {BC}} = {{AB} \over {AB + AC}}\)
\( \Rightarrow \displaystyle DB = {{BC.AB} \over {AB + AC}} = {{20.12} \over {12 + 16}} \)\(\, \displaystyle = {{60} \over 7}\) (cm)
Vậy \(DC = BC - DB = \displaystyle 20 - {{60} \over 7} = {{80} \over 7}\) (cm)
b) Ta có \(\displaystyle {S_{ABC}} = {1 \over 2}AB.AC = {1 \over 2}AH.BC\)
\( \Rightarrow AB.AC = AH.BC\)
\( \Rightarrow \displaystyle AH = {{AB.AC} \over {BC}} = {{12.16} \over {20}} = 9,6\) (cm)
Áp dụng định lí Py-ta-go vào tam giác vuông \(AHB\), ta có:
\(A{B^2} = A{H^2} + H{B^2}\)
\( \Rightarrow H{B^2} = A{B^2} - A{H^2}\)\(\, = {12^2} - {\left( {9,6} \right)^2} = 51,84 \)
\(\Rightarrow HB = 7,2\;(cm) \)
Vậy \(\displaystyle HD = BD - HB = {{60} \over 7} - 7,2 \)\(\,\approx 1,37\; (cm)\)
Áp dụng định lí Py-ta-go vào tam giác vuông \(AHD\), ta có:
\(A{D^2} = A{H^2} + H{D^2} \)\(\,= {\left( {9,6} \right)^2} + {\left( {1,37} \right)^2} \)\(\,= 94,0369\)
\( \Rightarrow AD ≈ 9,7\; (cm)\).