Bài 77 trang 51 SBT toán 7 tập 2

Đề bài

Cho tam giác \(ABC \) cân tại \(A.\) Vẽ điểm \(D\) sao cho \(A\) là trung điểm của \(BD.\) Kẻ đường cao \(AE\) của \(∆ABC,\) đường cao \(AF\) của \(∆ACD.\) Chứng minh rằng \(\widehat {EAF} = 90^\circ \) 

Lời giải

Vì \(∆ABC\) cân tại \(A,\) có \(A{\rm{E}} \bot BC\left( {gt} \right)\) 

Hay \(AE\) là đường cao, suy ra \(AE\) cũng là đường phân giác của \(\widehat {BAC}\)

\( \Rightarrow \widehat {EAC} = \dfrac{1}{2}\widehat {BAC}\)

Từ gt suy ra: \(AD=AC=AB\) nên \(∆ADC\) cân tại \(A.\)

Vì \(∆ADC\) cân tại \(A,\) có \({\rm{AF}} \bot {\rm{DC}}\left( {gt} \right)\)

Hay\(AF\) là đường cao, suy ra \(AF\) cũng là đường phân giác của \(\widehat {CA{\rm{D}}}\)

\( \Rightarrow \widehat {FAC} = \dfrac{1}{2}\widehat {DAC}\)

Mà \(\widehat {BAC}\) và \(\widehat {CA{\rm{D}}}\) là hai góc kề bù.

Nên \(\Rightarrow \widehat {EAC} + \widehat {FAC} \)\(= \dfrac{1}{2}\left( {\widehat {BAC} + \widehat {DAC}} \right) \)\(= \dfrac{1}{2}.180^\circ  = 90^\circ \)

Hay \(\widehat {EAF} = 90^\circ \)

Suy ra: \(A{\rm{E}} \bot {\rm{AF}}\)


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”