Cho hai đường tròn (O; R) và (O; R’) với R > R’ cắt nhau ở A và B sao cho O và O’ ở về hai phía của AB. Vẽ tiếp tuyến AD với đường tròn (O). Qua B vẽ đường thẳng song song với AD cắt đường tròn (O’) tại E và cắt (O) tại F. Chứng minh ADEF là hình bình hành.
Ta có : \(\widehat {BED} = \widehat {BAD}\) ( góc nội tiếp cùng chắn cung BD)
\(\widehat {BAD} = \widehat {BFA}\) ( góc giữa tiếp tuyến và một dây bằng góc nội tiếp cùng chắn cung AB)
Do đó : \(\widehat {BED} = \widehat {BFA}\)
\(\Rightarrow \) AF // ED ( đồng vị)
Lại có : BF // AD ( gt)
Vậy tứ giác ADEF là hình bình hành.