Với \(b = 2b’,\) \(\Delta \) = 4\(\Delta '\) ta có:
+) Nếu \(\Delta ' >0\) thì \(\Delta>0 \) phương trình có hai nghiệm
\(\eqalign{& {x_1} = {{ - b + \sqrt \Delta } \over {2a}} = {{ - 2b' + \sqrt {4\Delta '} } \over {2a}} \cr & = {{2\left( { - b' + \sqrt {\Delta '} } \right)} \over {2a}} = {{ - b' + \sqrt {\Delta '} } \over {a}} \cr & {x_2} = {{ - b - \sqrt \Delta } \over {2a}} = {{ - 2b' - \sqrt {4\Delta '} } \over {2a}} \cr & = {{2\left( { - b' - \sqrt {\Delta '} } \right)} \over {2a}} = {{ - b' - \sqrt {\Delta '} } \over {a}} \cr} \)
+) Nếu \(\Delta ' =0\) thì \(\Delta =0\) phương trình có nghiệm kép.
\(\displaystyle x = {{ - b} \over {2a}} = {{ - 2b'} \over {2a}} = {{ - b'} \over a}\)
+) Nếu \(\Delta '<0\) thì \(\Delta <0\) do đó phương trình vô nghiệm.