Ta có: \(\widehat {AOB}\) và \(\widehat {COD}\) đối đỉnh nên \(E,\, O,\, G\) thẳng hàng
\(\widehat {BOC}\)và \(\widehat {AOD}\) đối đỉnh nên \(F,\, O,\, H\) thẳng hàng
Xét \(∆ BEO\) và \(∆ BFO:\)
\(\widehat {EBO} = \widehat {FBO}\) (tính chất hình thoi)
\(OB\) cạnh chung
\(\widehat {EOB} = \widehat {FOB} = {45^0}\) (gt)
Do đó: \(∆ BEO = ∆ BFO\, (g.c.g)\)
\(⇒ OE = OF\) (1)
Xét \(∆ BEO\) và \(∆ DGO:\)
\(\widehat {EBO} = \widehat {GDO}\) (so le trong)
\(OB = OD\) (tính chất hình thoi)
\(\widehat {EOB} = \widehat {GOD}\) (đối đỉnh)
Do đó: \(∆ BEO = ∆ DGO\, (g.c.g)\
\(⇒ OE = OG\) (2)
Xét \(∆ AEO\) và \(∆ AHO:\)
\(\widehat {EAO} = \widehat {HAO}\) (tính chất hình thoi)
\(OA\) cạnh chung
\(\widehat {EOA} = \widehat {HOA} = {45^0}\) (gt)
Do đó: \(∆ AEO = ∆ AHO\, (g.c.g)\)
\(⇒ OE = OH\) (3)
Từ (1), (2) và (3) suy ra: \(OE = OF = OG = OH\) hay \(EG = FH\)
nên tứ giác \(EFGH\) là hình chữ nhật (vì có hai đường chéo cắt nhau tại trung điểm mỗi đường và bằng nhau)
\(OE ⊥ OF\) (tính chất hai góc kề bù)
hay \(EG ⊥ FH\)
Vậy hình chữ nhật \(EFGH\) là hình vuông.