Đề bài
Cho tam giác ABC, điểm D thuộc cạnh AC sao cho \(AD = {1 \over 2}DC\). Gọi M là trung điểm của BC, I là giao điểm của \(BD\) và \(AM.\) Chứng minh rằng \(AI = IM.\)
Đề bài
Hình thang \(ABCD\) có đáy \(AB,\) \(CD.\) Gọi \(E, F, I\) theo thứ tự là trung điểm của \(AD,\) \(BC,\) \(AC.\) Chứng minh rằng ba điểm \(E, I, F\) thẳng hàng.
Đề bài
Cho tứ giác \(ABCD.\) Gọi \(E, F, I\) theo thứ tự là trung điểm của \(AD,\) \(BC,\) \(AC.\) Chứng minh rằng:
\(a)\) \(EI// CD,\) \(IF // AB.\)
\(b)\) \(EF \le \displaystyle {{AB + CD} \over 2}\)
Đề bài
Cho hình thang \(ABCD\) \((AB // CD),\) \(M\) là trung điểm của \(AD,\) \(N\) là trung điểm của \(BC.\) Gọi \(I, K\) theo thứ tự là giao điểm của \(MN\) với \(BD, AC.\) Cho biết \(AB = 6\,cm,\) \(CD = 14 cm.\) Tính các độ dài \(MI, IK, KN.\)
Đề bài
Cho tam giác \(ABC,\) các đường trung tuyến \(BD\) và \(CE\) cắt nhau ở \(G.\) Gọi \(I, K\) theo thứ tự là trung điểm của \(GB, GC.\) Chứng minh rằng \(DE // IK,\) \(DE = IK.\)
Đề bài
Cho tam giác \(ABC,\) đường trung tuyến \(AM.\) Gọi \(D\) là trung điểm của \(AM,\) \(E\) là giao điểm của \(BD\) và \(AC.\) Chứng minh rằng \(AE = \displaystyle {1 \over 2}EC\).
Đề bài
Cho tam giác \(ABC,\) các đường trung tuyến \(BD,\) \(CE.\) Gọi \(M, N\) theo thứ tự là trung điểm của \(BE, CD. \) Gọi \(I, K\) theo thứ tự là giao điểm của \(MN\) với \(BD, CE.\) Chứng minh rằng \(MI = IK = KN.\)
Đề bài
Chứng minh rằng đường thẳng đi qua trung điểm một cạnh bên của hình thang và song song với hai đáy thì đi qua trung điểm của hai đường chéo và đi qua trung điểm của cạnh bên thứ hai.
Đề bài
Chứng minh rằng trong hình thang mà hai đáy không bằng nhau, đoạn thẳng nối trung điểm của hai đường chéo bằng nửa hiệu hai đáy.
Đề bài
Hình thang \(ABCD\) có \(AB // CD,\) \(AB = a,\) \(BC = b,\) \(CD = c,\) \(DA = d.\) Các đường phân giác của các góc ngoài đỉnh \(A\) và \(D\) cắt nhau tại \(M,\) các đường phân giác của các góc ngoài đỉnh \(B\) và \(C\) cắt nhau tại \(N.\)
\(a)\) Chứng ninh rằng \(MN // CD.\)
\(b)\) Tính độ dài MN theo \(a, b, c, d\) (\(a, b, c, d\) có cùng đơn vị đo)
Đề bài
Cho tam giác \(ABC,\) đường trung tuyến \(AM.\) Gọi \(O\) là trung điểm của \(AM.\) Qua \(O\) kẻ đường thẳng \(d\) cắt các cạnh \(AB\) và \(AC.\) Gọi \(AA’, BB’, CC’\) là các đường vuông góc kẻ từ \(A, B, C\) đến đường thẳng \(d.\) Chứng minh rằng: \({{AA' = }}\displaystyle {{BB' + CC'} \over 2}\)
Đề bài
Trên hình \(bs.1,\) ta có \(AB // CD // EF // GH\) và \(AC = CE = EG.\) Biết \(CD = 9,\) \(GH = 13.\) Các độ dài \(AB\) và \(EF\) bằng:
\((A)\) \(8\) và \(10\) \((B)\) \(6\) và \(12\)
\((C)\) \(7\) và \(11\) \((D)\) \(7\) và \(12\)
Đề bài
Cho đường thẳng \(d\) và hai điểm \(A, B\) có khoảng cách đến đường thẳng \(d\) theo thứ tự là \(20cm\) và \(6cm.\) Gọi \(C\) là trung điểm của \(AB.\) Tính khoảng cách từ \(C\) đến đường thẳng \(d.\)
Đề bài
Cho tam giác \(ABC.\) Gọi \(M\) là trung điểm của \(BC.\) Trên tia đối của tia \(BA\) lấy điểm \(D\) sao cho \(BD = AB.\) Gọi \(K\) là giao điểm của \(DM\) và \(AC.\) Chứng minh rằng \(AK = 2KC.\)