Bài 27 trang 79 SGK Toán 9 tập 2

Cho đường tròn tâm \((O)\), đường kính \(AB\). Lấy điểm khác \(A\) và \(B\) trên đường tròn. Gọi \(T\) là giao điểm của \(AP\) với tiếp tuyến tại \(B\) của đường tròn. Chứng minh:   \(\widehat{APO}\) =\(\widehat{PBT}.\)

Lời giải

Ta có: \(\widehat{PBT}\) là góc tạo bởi tiếp tuyến \(BT\) và dây cung \(BP\) chắn cung \(\overparen{PmB}\).

\(\Rightarrow \widehat{PBT} = \dfrac{1}{2} sđ \overparen{PmB}\)   (1)

Lại có: \(\widehat{PAO}\) là góc nội tiếp chắn cung \(\overparen{PmB}\)

\(\Rightarrow \widehat{PAO} = \dfrac{1}{2} sđ \overparen{PmB}\)   (2)

Mặt khác: \(\widehat{PAO}= \widehat{APO}\) (\(∆OAP \, \, cân\, \,  tại \, \,  O)\) (3)

Từ (1), (2), (3), suy ra   \(\widehat{APO} =\widehat{PBT}\) (đpcm)


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”