Bài 5 trang 92 SGK Hình học 12

Cho mặt cầu \((S)\) có phương trình: \({(x - 3)^2} + {(y + 2)^2} + {(z - 1)^2} = 100\) và mặt phẳng \((α)\) có phương trình \(2x - 2y - z + 9 = 0\). Mặt phẳng \((α)\) cắt mặt cầu \((S)\) theo một đường tròn \((C)\).

Hãy xác định toạ độ tâm và tính bán kính của đường tròn \((C)\).

Lời giải

Mặt cầu \((S)\) có tâm \(I(3, -2, 1)\) và bán kính \(R = 10\).

Khoảng cách từ tâm \(I\) của mặt cầu \((S)\) đến mặt phẳng \((α)\) là:

\(h=d(I, α)\) = \(\left| {{{2.3 - 2.( - 2) - 1 + 9} \over {\sqrt {{2^2} + {{( - 2)}^2} + {{( - 1)}^2}} }}} \right| = {{18} \over 3} = 6\)

Gọi \(r\) là bán kính đường tròn (C), áp dụng định lí Pitago ta có: \(r = \sqrt {{R^2} - {h^2}}  = \sqrt {{{10}^2} - {6^2}}  = 8\)

Tâm \(K\) của đường tròn \((C)\) là hình chiếu vuông góc của tâm \(I\) của mặt cầu trên mặt phẳng \((α)\).

Mặt phẳng \(((α)\) có vectơ pháp tuyến \(\overrightarrow n  = (2, -2. -1)\).

Đường thẳng \(d\) qua \(I\) và vuông góc với \((α)\) nhận \(\overrightarrow n = (2, -2, -1)\) làm vectơ chỉ phương và có phương trình \(d\) : \(\left\{ \matrix{x = 3 + 2t \hfill \cr y = - 2 - 2t \hfill \cr z = 1 - t \hfill \cr} \right.\)

\(K \in d \Rightarrow K\left( {3 + 2t; - 2 - 2t;1 - t} \right);\,\,K \in \left( \alpha  \right)\) nên thay tọa độ điểm K vào phương trình mặt phẳng \((\alpha)\) ta có: 

\(2.(3+2t)-2.(-2-2t)-(1-t)+9=0\Rightarrow t=-2\)

\( \Rightarrow K\left( { - 1;2;3} \right)\)


Bài Tập và lời giải

Bài 44 trang 74 SBT toán 7 tập 1

Đề bài

a) Viết tọa độ các điểm \(M, N, P, Q\) trong hình \(5.\)

b) Em có nhận xét gì về tọa độ của các cặp điểm \(M\) và \(N, P\) và \(Q.\)

Xem lời giải

Bài 45 trang 74 SBT toán 7 tập 1

Đề bài

Vẽ một hệ trục tọa độ và đánh dấu vị trí các điểm:

\(\displaystyle A(2; - 1,5),B\left( { - 3;{3 \over 2}} \right),C(2,5;0)\).

Xem lời giải

Bài 46 trang 74 SBT toán 7 tập 1

Đề bài

Xem hình 6, hãy cho biết:

a) Tung độ của các điểm \(A, B.\)

b) Hoành độ của các điểm \(C, D.\)

c) Tung độ của một điểm bất kì trên trục hoành và hoành độ của một điểm bất kỳ trên trục tung.

Xem lời giải

Bài 47 trang 75 SBT toán 7 tập 1

Đề bài

Tìm tọa độ các đỉnh của hình chữ nhật \(MNPQ \) và của tam giác \(ABC\) trong hình 7.

Xem lời giải

Bài 48 trang 75 SBT toán 7 tập 1

Đề bài

Vẽ một hệ trục \(Oxy\) và đánh dấu các điểm:

\(G(-2; -0,5), H(-1; -0,5),\)\(\, I(-1; -1,5), K(-2; -1,5)\).

Tứ giác \(GHIK\) là hình gì?

Xem lời giải

Bài 49 trang 75 SBT toán 7 tập 1

Đề bài

Cân nặng và tuổi của bốn bạn được biểu diễn trên mặt phẳng tọa độ (hình 8) (Mỗi đơn vị trên trục hoành biểu thị 1 năm, mỗi đơn vị trên trục tung biểu thị 2,5kg). Hỏi:

a) Ai là người nặng nhất và nặng bao nhiêu?

b) Ai là người ít tuổi nhất và bao nhiêu tuổi?

c) Giữa Liên và Hương, ai nặng hơn và ai nhiều tuổi hơn?

Xem lời giải

Bài 50 trang 76 SBT toán 7 tập 1

Đề bài

Vẽ một hệ trục tọa độ và đường phân giác của các góc phần tư thứ I, III.

a) Đánh dấu điểm \(A\) nằm trên đường phân giác đó và có hoành độ là \(2.\) Điểm \(A\) có tung độ là bao nhiêu?

b) Em có dự đoán gì về mối quan hệ giữa tung độ và hoành độ của một điểm \(M\) nằm trên đường phân giác đó?

Xem lời giải

Bài 51 trang 76 SBT toán 7 tập 1
Làm tương tự như bài \(50\) đối với đường phân giác của các góc phần tư thứ \(II,IV\).

Xem lời giải

Bài 52 trang 76 SBT toán 7 tập 1

Đề bài

Tìm tọa độ của đỉnh thứ tư của hình vuông trong mỗi trường hợp dưới đây (hình 9).

Xem lời giải

Bài 6.1, 6.2, 6.3, 6.4 phần bài tập bổ sung trang 76, 77 SBT toán 7 tập 1

Bài 6.1

Điền vào chỗ trống các từ thích hợp.

a) Mỗi điểm \(M\) xác định……\((x_0; y_0)\). Ngược lại, mỗi cặp số \((x_0; y_0)\)……điểm \(M\).

b) Cặp số \((x_0; y_0)\) là tọa độ của điểm \(M\), \(x_0\) là……………và \(y_0\) là…………của điểm \(M\).

c) Điểm \(M\) có tọa độ……………… được kí hiệu là \(M(x_0; y_0).\)


Xem lời giải

Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”