Xét bài toán tổng quát:
\(ABCD\) là hình thoi, \(O\) là giao điểm hai đường chéo \(AC=10\,cm\); \(BD=8\,cm\)
Theo tính chất của hình thoi hai đường chéo của hình thoi vuông góc và cắt nhau tại trung điểm mỗi đường.
\( \Rightarrow \left\{ \begin{array}{l}OA = \dfrac{{AC}}{2}\\OB = \dfrac{{B{\rm{D}}}}{2}\end{array} \right.\)
Áp dụng định lí Pytago vào tam giác vuông \(ABO\) ta có:
\(\eqalign{
& A{B^2} = O{A^2} + O{B^2} \cr&\;\;\;\;\;\;\;\;= {\left( {{1 \over 2}AC} \right)^2} + {\left( {{1 \over 2}BD} \right)^2} \cr
& \Rightarrow AB = \sqrt {{{\left( {{1 \over 2}AC} \right)}^2} + {{\left( {{1 \over 2}BD} \right)}^2}}\cr&\;\;\;\;\;\;\;\;\;\;\; = \sqrt { {5^2}+{4^2} } = \sqrt {41} cm \cr} \)
Vậy (B) đúng.