Bài 85 trang 172 SBT toán 9 tập 1

Đề bài

Cho đường tròn \((O),\) đường kính \(AB,\)  điểm \(M\) thuộc đường tròn. Vẽ điểm \(N\) đối xứng với \(A\) qua \(M.\) \(BN\) cắt đường  tròn ở \(C.\) Gọi \(E\) là giao điểm của \(AC\) và \(BM.\)

\(a)\) Chứng minh rằng \(NE  ⊥ AB.\) 

\(b)\) Gọi \(F\) là điểm đối xứng với \(E\) qua \(M.\) Chứng minh rằng \(FA\) là tiếp tuyến của đường tròn \((O).\)

\(c)\) Chứng minh rằng \(FN\) là tiếp tuyến của đường tròn \(( B ;  BA).\)

Lời giải

\(a)\) Tam giác \(ABM\) nội tiếp trong đường tròn \((O)\) có \(AB\) là đường kính nên vuông tại \(M\)

Suy ra: \(AN ⊥ BM\)

Tam giác \(ABC\) nội tiếp trong đường tròn \((O)\) có \(AB\) là đường kính nên vuông tại \(C\)

Suy ra: \(AC ⊥ BN\)

Tam giác \(ABN\) có hai đường cao \(AC\) và \(BM\) cắt nhau tại \(E\) nên \(E\) là trực tâm của tam giác \(ABN\) 

Suy ra: \(NE ⊥ AB\)

\(b)\) Ta có: \(MA = MN\) ( tính chất đối xứng tâm)

                 \(ME = MF\) ( tính chất đối xứng tâm)

Tứ giác \(AENF\) có hai đường chéo cắt nhau tại trung điểm của mỗi điểm đường nên nó là hình bình hành.

Suy ra:    \(AF // NE\)

Mà          \(NE ⊥ AB\) ( chứng minh trên)

Suy ra: \(AF ⊥ AB\) tại \(A.\)

Vậy \(FA\) là tiếp tuyến của đường tròn \((O).\)

\(c)\) Trong tam giác \(ABN\) ta có: \(AN ⊥ BM\) và \(AM = AN\)

Suy ra tam giác \(ABN\) cân tại \(B.\)

Suy ra \(BA = BN\) hay \(N\) thuộc đường tròn \((B; BA)\)

Tứ giác \(AFNE\) là hình bình hành nên  \(AE // FN\) hay \(FN // AC\)

Mặt khác: \(AC ⊥ BN\) ( chứng minh trên)

Suy ra: \(FN ⊥ BN \) tại \(N\)

Vậy \(FN\) là tiếp tuyến của đường tròn \(( B; BA).\)