Bài 87 trang 172 SBT toán 9 tập 1

Đề bài

Cho hai đường tròn \((O ; R)\) và \((O' ; R')\) tiếp xúc ngoài tại \(A ( R > R').\) Vẽ các đường kính \(AOB, AO'C.\) Dây \(DE\) của đường tròn \((O)\) vuông góc với \(BC\) tại trung điểm \(K\) của \(BC.\)

\(a)\) Chứng minh rằng tứ giác \(BDCE\) là hình thoi.

\(b)\) Gọi \(I\) là giao điểm của \(EC\) và đường tròn \((O').\) Chứng minh rằng ba điểm \(D, A, I\) thẳng hàng.

\(c)\) Chứng minh rằng \(KI\) là tiếp tuyến của đường tròn \((O').\)

Lời giải

\(a)\) Vì đường tròn \((O)\) và \((O')\) tiếp xúc ngoài tại \(A\) nên \(O, A\) và \(O'\) thẳng hàng.

Ta có: \(KB = KC (gt)\)

Trong đường tròn \((O)\) ta có: \( AB ⊥ DE\) tại \(K\)

Suy ra: \(KD = KE\) ( đường kính vuông góc với dây cung)

Tứ giác \(BDCE\) có hai đường chéo cắt nhau tại trung điểm của mỗi đường nên nó là hình bình hành.

Lại có: \(BC ⊥ DE\)

Suy ra tứ giác \(BDCE\) là hình thoi.

\(b)\) Tam giác \(ABD\) nội tiếp trong đường tròn \((O)\) có \(AB\) là đường kính nên vuông tại \(D.\)

Suy ra: \(AD ⊥ BD\)

Tứ giác \(BDCE\) là hình thoi nên \(EC // BD\)

Suy ra: \(EC ⊥ AD\;\;  (1)\)

Tam giác \(AIC\) nội tiếp trong đường tròn \((O')\) có \(AC\) là đường kính nên vuông tại \(I.\)

Suy ra: \(AI ⊥ CE\;\;(2)\)

Từ \((1)\) và \((2)\) suy ra \(AD\) trùng với \(AI\)

Vậy \(D, A, I\) thẳng hàng.

c) Tam giác \(DIE\) vuông tại \(I\) có \(IK\) là trung tuyến thuộc cạnh huyền \(DE\) nên:

\(KI = KD = \displaystyle {1 \over 2}ED\) ( tính chất tam giác vuông)

Suy ra tam giác \(IKD\) cân tại \(K\)

Suy ra: \(\widehat {KID} = \widehat {KDI}\) hay \(\widehat {KIA} = \widehat {KDA}\)   \((3)\)

Ta có: \(O'A = O'I ( = R)\) nên tam giác \(O'IA\) cân tại \(O'\)

Suy ra: \(\widehat {O'AI} = \widehat {O'IA}\) ( tính chất tam giác cân)

Mà: \(\widehat {O'AI} = \widehat {KAD}\) (đối đỉnh)

Suy ra: \(\widehat {O'IA} = \widehat {KAD}\)  \( (4)\)

Từ \((3)\) và \((4)\) suy ra: \(\widehat {KIO'} = 90^\circ \) hay \(KI ⊥ O'I\) tại \(I.\)

Vậy \(KI\) là tiếp tuyến của đường tròn \((O').\)