Đề kiểm tra 15 phút - Đề số 1 - Bài 6 - Chương 4 – Đại số 7

Đề bài

Bài 1: Tính tổng của các đa thức:

\(A = {x^2}y - x{y^2} + 3{{\rm{x}}^3}\) và  \(B = x{y^2} + {x^2}y - 2{x^3} - 1\).   

Bài 2: Cho \(P = 2{{\rm{x}}^2} - 3{\rm{x}}y - 2{y^2};\)

                  \(Q = 3{{\rm{x}}^2} + 4{\rm{x}}y - {y^2};\)

                  \(R = {x^2} + 2{\rm{x}}y + 3{y^2}\).

Tính \(P - Q + R\).

Bài 3: Cho \(K = 3{{\rm{x}}^2} + 2{\rm{x}}y - 2{y^2}\) và \(M = 3{y^2} - 2{\rm{x}}y - {x^2}\).

Chứng tỏ \(K + M\) luôn nhận giá trị không âm với mọi x; y.

Lời giải

Bài 1:

\(A + B = ({x^2}y - x{y^2} + 3{{\rm{x}}^3}) + (x{y^2} + {x^2}y - 2{x^3} - 1)\)

\( = {x^2}y - x{y^2} + 3{{\rm{x}}^3} + x{y^2} + {x^2}y - 2{x^3} - 1\)

\( = 2{{\rm{x}}^2}y + {x^3} - 1.\)

Bài 2:

\(P - Q + R = (2{{\rm{x}}^2} - 3{\rm{x}}y - 2{y^2}) - (3{{\rm{x}}^2} + 4{\rm{x}}y - {y^2}) + ({x^2} + 2{\rm{x}}y + 3{y^2})\)

\( = 2{{\rm{x}}^2} - 3{\rm{x}}y - 2{y^2} - 3{{\rm{x}}^2} - 4{\rm{x}}y + {y^2} + {x^2} + 2{\rm{x}}y + 3{y^2}\)

\( =  - 5{\rm{x}}y + 2{y^2}.\)

Bài 3: Ta có:

\(K + M = (3{x^2} + 2xy - 2{y^2}) + (3{y^2} - 2xy - {x^2}) \)

\(= 3{x^2} + 2xy - 2{y^2} + 3{y^2} - 2xy - {x^2} \)

\( = 2{x^2} + {y^2} \ge 0,\) vì \({x^2} \ge 0\) và \({y^2} \ge 0\) với mọi x; y.


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”