Đề kiểm tra 15 phút - Đề số 3 - Bài 1 - Chương 1 - Đại số 9

Bài 1. Chứng minh rằng nếu \(a > 1\) thì \(a > \sqrt a .\)

Bài 2. Chứng minh rằng với mọi x, ta có : \(\sqrt {{x^2} + 2x + 5}  \ge 2.\)

Bài 3. So sánh : \(\sqrt 3  - 5\) và \(-2\) (không dùng máy tính bỏ túi hay bảng số).

Lời giải

Bài 1. Ta có: \(a > 1 \Rightarrow \sqrt a  > \sqrt 1  \Leftrightarrow \sqrt a  > 1.\)

Nhân hai vế của bất đẳng thức trên với số dương \(\sqrt a \), ta được:

\(\sqrt a .\sqrt a  > \sqrt a  \Leftrightarrow a > \sqrt a .\)

Bài 2. Ta có: \({x^2} + 2x + 5 = {x^2} + 2x + 1 + 4 \) \(= {\left( {x + 1} \right)^2} + 4.\)

Vì \({\left( {x + 1} \right)^2} \ge 0,\) với mọi x thuộc \(\mathbb R\), nên :

\(\eqalign{  & {\left( {x + 1} \right)^2} + 4 \ge 4  \cr  &  \Rightarrow \sqrt {{{\left( {x + 1} \right)}^2} + 4}  \ge \sqrt 4   \cr  &  \Rightarrow \sqrt {{x^2} + 2x + 5}  \ge 2 \cr} \)

Bài 3. Ta có: \(\sqrt 3  < 5 - 2 \Leftrightarrow \sqrt 3  < 5 - 2 \Rightarrow \sqrt 3  < 3\)

\( \Leftrightarrow {\left( {\sqrt 3 } \right)^2} < {3^2} \Leftrightarrow 3 < 9\) (hiển nhiên)


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”