\(a)\) \(∆ ABC\) cân tại \(A\)
\( \Rightarrow \widehat B = \widehat C = \displaystyle {{{{180}^0} - \widehat A} \over 2}\) (tính chất tam giác cân) \((1)\)
\(AB = AC\;\;\; (gt) \)
\(⇒ AM + BM= AN+ CN\)
mà \(BM = CN \;\;\; (gt)\)
suy ra: \(AM = AN\)
\(⇒ ∆ AMN\) cân tại \(A\)
\( \Rightarrow {\widehat M_1} = {\widehat N_1} = \displaystyle {{{{180}^0} - \widehat A} \over 2}\) ( tính chất tam giác cân) \((2)\)
Từ \((1)\) và \((2)\) suy ra: \({\widehat M_1} = \widehat B\)
\(⇒MN // BC\) ( vì có các cặp góc đồng vị bằng nhau)
Tứ giác \(BCMN\) là hình thang có \(\widehat B = \widehat C\). Vậy \(BCMN\) là hình thang cân.
\(b)\) \(\widehat B = \widehat C =\displaystyle {{{{180}^0} - \widehat A} \over 2}\)\( = \displaystyle {{{{180}^0} - {{40}^0}} \over 2} = {70^0}\)
Mà \({\widehat M_2} + \widehat B = {180^0}\) (hai góc trong cùng phía)
\( \Rightarrow {\widehat M_2} = {180^0} - \widehat B = {180^0} - {70^0} = {110^0}\)
\({\widehat N_2} = {\widehat M_2} = {110^0}\) (tính chất hình thang cân)