\(\eqalign{
& \widehat {ADC} = \widehat {BCD}\,\,\,\,(gt) \cr
& \Rightarrow \widehat {KDC} = \widehat {KCD} \cr} \)
\(⇒ ∆ KCD\) cân tại \(K\)
\(⇒ KD = KC\)
\(⇒ KA + AD = KB + BC\)
Mà \(AD = BC\) (tính chất hình thang cân)
\(⇒ KA = KB\)
Xét \(∆ ADC\) và \(∆ BCD :\)
\(AD = BC\) (chứng minh trên)
\(AC = BD\) (tính chất hình thang cân)
\(CD\) cạnh chung
Do đó: \(∆ ADC = ∆ BCD\;\;\; (c.c.c)\)
\( \Rightarrow {\widehat D_1} = {\widehat C_1}\)
\(⇒ ∆ IDC\) cân tại \(I\)
\(⇒ IC = ID\) nên \(I\) thuộc đường trung trực của \(CD\)
\(KC = KD\) nên \(K\) thuộc đường trung trực của \(CD\)
\(K≢ I.\) Vậy \(KI\) là đường trung trực của \(CD.\)
\(BD = AC\) (tính chất hình thang cân)
\(⇒ IB + ID = IA + IC\) mà \(ID = IC\) (chứng minh trên)
\(⇒ IB = IA\) \(\Rightarrow \Delta IAB\) cân tại \(I\)
nên \(I\) thuộc đường trung trực \(AB\)
\( KA = KB\) ( chứng minh trên) \(\Rightarrow \Delta KAB\) cân tại \(K\)
nên \(K\) thuộc đường trung trực \(AB\)
\(K≢ I.\) Vậy \(KI\) là đường trung trực của \(AB.\)