Gọi chiều rộng của sân trường là \(x (m)\), chiều dài của sân trường là \(y (m).\)
Điều kiện: \(0 < x <y< 170\)
Vì chu vi của sân trường bằng \(340m\) nên ta có phương trình:
\(\left( {x + y} \right).2 = 340 \Leftrightarrow x + y = 170\)
Ba lần chiều dài hơn bốn lần chiều rộng là \(20m\) nên ta có phương trình: \(3y – 4x = 20\)
Khi đó ta có hệ phương trình:
\(\eqalign{
& \left\{ {\matrix{
{x + y = 170} \cr
{3y - 4x = 20} \cr
} } \right. \cr& \Leftrightarrow \left\{ {\matrix{
{4x + 4y = 680} \cr
{ - 4x + 3y = 20} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{7y = 700} \cr
{x + y = 170} \cr
} } \right. \cr& \Leftrightarrow \left\{ {\matrix{
{y = 100} \cr
{x + 100 = 170} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{y = 100} \cr
{x = 70} \cr} } \right. \cr} \)
Cả hai giá trị \(x = 70; y = 100\) thỏa mãn điều kiện bài toán.
Vậy chiều rộng của sân là \(70m\), chiều dài của sân là \(100m.\)