Gọi thời gian người thứ nhất xây một mình xong bức tường là \(x\) ( giờ), thời gian người thứ hai xây một mình xong bức tường là \(y\) (giờ)
Điều kiện: \(x >\displaystyle {36 \over 5};y > {36 \over 5}\)
Trong \(1\) giờ người thứ nhất xây được \(\displaystyle{1 \over x}\) (bức tường)
Trong \(1\) giờ người thứ hai xây được \(\displaystyle{1 \over y}\) (bức tường)
Vì hai người thợ cùng xây một bức tường trong \(7\) giờ \(12\) phút hay \(\dfrac {36}{5}\) giờ thì xong nên trong \(1\) giờ cả hai người xây được \(\displaystyle 1:{{36} \over 5} = {5 \over {36}}\) (bức tường).
Do đó ta có phương trình: \(\displaystyle{1 \over x} + {1 \over y} = {5 \over {36}}\)
Nếu người thứ nhất làm trong \(5\) giờ và người thứ hai làm trong \(6\) giờ thì cả hai xây được \(\displaystyle{3 \over 4}\) bức tường, khi đó ta có:
\(\displaystyle{5 \over x} + {6 \over y} = {3 \over 4}\)
Ta có hệ phương trình:
\(\left\{ {\matrix{\displaystyle
{{1 \over x} + {1 \over y} = {5 \over {36}}} \cr
\displaystyle{{5 \over x} + {6 \over y} = {3 \over 4}} \cr} } \right.\)
Đặt \(\displaystyle{1 \over x} = a;{1 \over y} = b (a>0;b>0)\) ta có:
\(\eqalign{
& \left\{ {\matrix{
{a + b = \displaystyle{5 \over {36}}} \cr
{5a + 6b =\displaystyle {3 \over 4}} \cr
} } \right.\cr& \Leftrightarrow \left\{ {\matrix{
{5a + 5b = \displaystyle{{25} \over {36}}} \cr
{5a + 6b = \displaystyle{3 \over 4}} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{b = \displaystyle{1 \over {18}}} \cr
{a + b = \displaystyle{5 \over {36}}} \cr
} } \right.\cr& \Leftrightarrow \left\{ {\matrix{
{b = \displaystyle{1 \over {18}}} \cr
{a = \displaystyle{1 \over {12}}} \cr} } \right. \text{(thỏa mãn)} \cr} \)
Suy ra:
\(\left\{ {\matrix{\displaystyle
{{1 \over x} = {1 \over {12}}} \cr
\displaystyle{{1 \over y} = {1 \over {18}}} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{x = 12} \cr
{y = 18} \cr} } \right.\text{(thỏa mãn)} \)
Vậy người thứ nhất làm một mình trong \(12\) giờ thì xây xong bức tường, người thứ hai làm một mình trong \(18\) giờ thì xây xong bức tường.