Bài 42 trang 84 SBT toán 8 tập 1

Đề bài

Chứng minh rằng trong hình thang mà hai đáy không bằng nhau, đoạn thẳng nối trung điểm của hai đường chéo bằng nửa hiệu hai đáy.

Lời giải

Giả sử hình thang \(ABCD\) có \(AB // CD,\) \(AB < CD.\)

\(I, K\) lần lượt là trung điểm hai đường chéo \(BD, AC\)

Gọi \(F\) là trung điểm của \(BC\)

Trong tam giác \(ACB\) ta có:

\(K\) là trung điểm của cạnh \(AC\)

\(F\) là trung điểm của cạnh \(BC\)

Nên \(KF\) là đường trung bình của \(∆ ABC\)

\(⇒ KF // AB\) và \(KF = \displaystyle{1 \over 2}AB\) (tính chất đường trung bình của tam giác)

Trong tam giác \(BDC\) ta có:

\(I\) là trung điểm của cạnh \(BD\)

\(F\) là trung điểm của cạnh \(BC\)

Nên \(IF\) là đường trung bình của \(∆ BDC\)

\(⇒ IF // CD\) và \(IF = \displaystyle {1 \over 2}CD\) (tính chất đường trung bình của tam giác)

\(FK // AB\) mà \(AB // CD\) nên \(FK // CD\)

\(FI // CD\) (chứng minh trên)

Suy ra hai đường thẳng \(FI\) và \(FK\) trùng nhau.

\(⇒ I, K, F\) thẳng hàng, \(AB < CD\)\( ⇒ FK < FI\) nên \(K\) nằm giữa \(I\) và \(F\)

\(IF = IK + KF\)

\(\eqalign{
& \Rightarrow IK = IF - KF \cr 
& = \displaystyle{1 \over 2}CD - {1 \over 2}AB = {{CD - AB} \over 2} \cr} \)