Bài 54 trang 144 SBT toán 7 tập 1

Đề bài

Cho tam giác \(ABC\) có \(AB = AC.\) Lấy điểm \(D\) trên cạnh \(AB\), điểm \(E\) trên cạnh \(AC\) sao cho \(AD = AE.\)

a) Chứng minh rằng \( BE = CD.\)

b) Gọi \(O\) là giao điểm của \(BE\) và \(CD.\) Chứng minh rằng \(∆BOD = ∆COE\).

Lời giải

a) Xét \(∆BEA\) và \(∆CDA\) có:

\(BA = CA\) (gt)

\(\widehat A\) chung

\(AE = AD\) (gt)

\(\Rightarrow ∆BEA = ∆CDA\) (c.g.c)

\(\Rightarrow BE = CD\) (hai cạnh tương ứng)

b) \(∆BEA = ∆CDA\) (chứng minh trên)

\(\Rightarrow \widehat {{B_1}} = \widehat {{C_1}};\widehat {{E_1}} = \widehat {{D_1}}\) (hai góc tương ứng)    (1)

\(\widehat {{E_1}} + \widehat {{E_2}} = 180^\circ \) (hai góc kề bù)    (2)

\(\widehat {{D_1}} + \widehat {{D_2}} = 180^\circ \) (hai góc kề bù)   (3)

Từ (1), (2) và (3) \( \Rightarrow \widehat {{E_2}} = \widehat {{D_2}}\)

\(AB = AC\) (gt)

\( \Rightarrow  AE + EC  =  AD + DB\) mà \(AE = AD\) (gt) \( \Rightarrow EC = DB\)

Xét \(∆ODB\) và \(∆OEC\) có:

\(\widehat {{D_2}} = \widehat {{E_2}}\) (chứng minh trên)

\(DB = EC\) (chứng minh trên)

\(\widehat {{B_1}} = \widehat {{C_1}}\) (chứng minh trên)

\( \Rightarrow ∆ODB = ∆OEC \) (g.c.g)


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”