Bài 62 trang 145 SBT toán 7 tập 1

Đề bài

Cho tam giác \(ABC.\) Vẽ ở phía ngoài tam giác \(ABC\) các tam giác  vuông tại \(A\) là \(ABD, ACE\) có \(AB = AD, AC = AE.\) Kẻ \(AH\) vuông góc với \(BC, DM \) vuông góc với \(AH, EN\) vuông góc với \(AH.\) Chứng minh rằng:

a) \(DM = AH.\)

b) \(MN\) đi qua trung điểm của \(DE\).

Lời giải

a) Ta có \(\widehat {BAH} + \widehat {BA{\rm{D}}} + \widehat {DAM} = 180^\circ \)

Mà  \(\widehat {BA{\rm{D}}} = 90^\circ  \Rightarrow \widehat {BAH} + \widehat {DAM} = 90^\circ \)      (1)

Xét tam giác \(AMD\) có \(\widehat {AM{\rm{D }}} = 90^\circ\)

\(  \Rightarrow \widehat {DAM} + \widehat {A{\rm{D}}M} = 90^\circ \left( 2 \right)\)

Từ (1) và (2) suy ra: \(\widehat {BAH} = \widehat {A{\rm{D}}M}\)

Xét hai tam giác vuông \(AMD\) và \(BHA\) có:

\(\widehat {AM{\rm{D}}} = \widehat {BHA} = 90^\circ \)

\( DA=AB  \) (gt)

\( \widehat {A{\rm{D}}M}=\widehat {BAH} \) (chứng minh trên)

\( \Rightarrow  ∆AMD = ∆BHA \) (cạnh huyền, góc nhọn)

\( \Rightarrow DM=AH \) (hai cạnh tương ứng)     (3)

b) Ta có: \(\widehat {HAC} + \widehat {CA{\rm{E}}} + \widehat {N{\rm{A}}E} = 180^\circ \)

Mà \(\widehat {CA{\rm{E}}} = 90^\circ \left( {gt} \right) \)

\(\Rightarrow \widehat {HAC} + \widehat {N{\rm{A}}E} = 90^\circ \)     (4)

Xét tam giác \(AHC\) có \(\widehat {AHC} = 90^\circ  \)

\(\Rightarrow \widehat {HAC} + \widehat {HCA} = 90^\circ\;\; \left( 5 \right)\)

Từ (4) và (5) suy ra: \(\widehat {HCA} = \widehat {N{\rm{A}}E}\)

Xét hai tam giác vuông \(AHC\) và \(ENA\) có:

\(\widehat {AHC} = \widehat {E{\rm{N}}A} = 90^\circ \)

\(AC = EA\) (gt)

\(\widehat {HCA} = \widehat {N{\rm{A}}E}\) (chứng minh trên)

\( \Rightarrow  ∆AHC = ∆ENA\) (cạnh huyền, góc nhọn)

\( \Rightarrow AH = EN\) (hai cạnh tương ứng)     (6)

Từ (3) và (6)  suy ra: \(DM = EN\).

Vì \(DM \bot AH\) và \(EN \bot AH\) nên \(DM // EN\) (hai đường thẳng phân biệt cùng vuông góc với đường thẳng thứ ba thì chúng song song với nhau)

Gọi \(O\) là giao điểm của \(MN\) và \(DE\)

Vì \(MN//DE\) nên \(\widehat {M{\rm{D}}O} = \widehat {NEO}\) (cặp góc so le trong).

Xét hai tam giác vuông \(DMO\) và \(ENO\) có:

\(\widehat {DMO} = \widehat {EN{\rm{O}}} = 90^\circ \)

\(DM = EN\) (chứng minh trên)

\(\widehat {M{\rm{D}}O} = \widehat {NEO}\) (chứng minh trên)

\( \Rightarrow  ∆DMO = ∆ENO \) (g.c.g)

\( \Rightarrow OD = OE\) (hai cạnh tương ứng).

\(\Rightarrow O\) là trung điểm của \(DE\).

Vậy \(MN\) đi qua trung điểm của \(DE.\)


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”