Bài 63 trang 146 SBT toán 7 tập 1

Đề bài

Cho tam giác \(ABC, D\) là trung điểm của \(AB.\) Đường thẳng qua \(D\) và song song với \(BC\) cắt \(AC\) ở \(E\), đường thẳng qua \(E\) và song song với \(AB\) cắt \(BC\) ở \(F.\) Chứng minh rằng:

a) \(AD = EF\).

b) \(∆ADE =∆EFC\).

c) \(AE = EC\).

Lời giải

a) Xét \(∆DBF\) và \(∆FED\), ta có ;

\(\widehat {B{\rm{D}}F} = \widehat {EFD}\) (so le trong, \(EF // AB\))

\(DF\) cạnh chung

\(\widehat {DFB} = \widehat {F{\rm{D}}E}\) (so le trong, \(DE // BC\))

\( \Rightarrow  ∆DBF = ∆FED\) (g.c.g)

\( \Rightarrow DB = EF \) (hai cạnh tương ứng)

Mà \(AD = DB\) (vì \(D\) là trung điểm của \(AB\))

Suy ra \(AD  = EF\).

b) Vì \(DE // BC\) (gt) \( \Rightarrow \widehat {{D_1}} = \widehat B\) (đồng vị)

\(EF // AB\) (gt) \( \Rightarrow \widehat {{F_1}} = \widehat B\) (đồng vị)

\(\widehat {{E_1}} = \widehat A\) (đồng vị)

Xét \(∆ADE\) và \(∆ EFC\) có:

\(\widehat A = \widehat {{E_1}}\) (chứng minh trên)

\(AD = EF\) (chứng minh trên)

\(\widehat {{D_1}} = \widehat {{F_1}}\) (vì cùng bằng \(\widehat B\)) 

\( \Rightarrow  ∆ADE = ∆ EFC\) (g.c.g)

c) Vì \(∆ADE = ∆ EFC\) (chứng minh trên)

\( \Rightarrow AE = EC\) (hai cạnh tương ứng).


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”