Do tứ giác \(ABCP\) nội tiếp nên ta có:
\(\widehat{BAP} + \widehat{BCP} = 180^0.\) (1)
Ta lại có: \(\widehat{ABC}+ \widehat{BCP}= 180^0\) (hai góc trong cùng phía do \(CD//AB\)). (2)
Từ (1) và (2) suy ra: \(\widehat{BAP}= \widehat{ABC}.\)
Vậy \(ABCP\) là hình thang cân, suy ra \(AP = BC.\) (3)
Mà \(BC = AD\) (hai cạnh đối của hình bình hành) (4)
Từ (3) và (4) suy ra \(AP = AD\) (đpcm).