Trả lời câu hỏi Bài 7 trang 88 Toán 9 Tập 2

Xem hình 45. Hãy chứng minh định lý trên.

Lời giải

Xét đường tròn \((O)\) ta có:

\(\widehat {BAD} = \dfrac{1}{2}sđ\,\overparen {BCD}\) (góc nội tiếp chắn cung \(BCD\))

\(\widehat {BCD} = \dfrac{1}{2}sđ\,\overparen {BAD}\) (góc nội tiếp chắn cung \(BAD\))

Suy ra \(\widehat {BAD} + \widehat {BCD} = \dfrac{1}{2}sđ\,\overparen {BCD} + \dfrac{1}{2}sđ\,\overparen {BAD} = \dfrac{{sđ\,\overparen {BAD} + sđ\,\overparen {BCD}}}{2}\) \( = \dfrac{{360^\circ }}{2} = 180^\circ .\)

Vậy \(\widehat {BAD} + \widehat {BCD} = 180^\circ \) .

Vậy trong một tứ giác nội tiếp, tổng số đo hai góc đối nhau bằng \(180^0\).

 


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”