Bài 1. Ta có: \( {y^2} - yz = y\left( {y - z} \right);\)
\(\;{y^2} + yz = y\left( {y + z} \right);\)
\({y^2} - {z^2} = \left( {y - z} \right)\left( {y + z} \right)\)
\( MTC = y\left( {y - z} \right)\left( {y + z} \right)\)
Bài 2.
a) Ta có: \( MTC = {x^3} - 1 = \left( {x - 1} \right)\left( {{x^2} + x + 1} \right)\)
\( {{2x} \over {{x^2} + x + 1}} = {{2x\left( {x - 1} \right)} \over {\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} = {{2x\left( {x - 1} \right)} \over {{x^3} - 1}};\)
\( {x \over {x - 1}} = {{x\left( {{x^2} + x + 1} \right)} \over {\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} = {{x\left( {{x^2} + x + 1} \right)} \over {{x^3} - 1}}\)
b) Ta có: \( {x^2} - 4 = \left( {x - 2} \right)\left( {x + 2} \right);\)
\(\;{x^2} + 4x + 4 = {\left( {x + 2} \right)^2}\)
\( {x^2} - 4x + 4 = {\left( {x - 2} \right)^2}\)
\( MTC = {\left( {x + 2} \right)^2}{\left( {x - 2} \right)^2}\)
Vậy:
\( {{5x} \over {{x^2} - 4}} = {{5x\left( {{x^2} - 4} \right)} \over {\left( {{x^2} - 4} \right)\left( {{x^2} - 4} \right)}} = {{5x\left( {{x^2} - 4} \right)} \over {{{\left( {x + 2} \right)}^2}{{\left( {x - 2} \right)}^2}}}\)
\( {{3x + y} \over {{x^2} + 4x + 4}} = {{\left( {3x + y} \right){{\left( {x - 2} \right)}^2}} \over {{{\left( {x + 2} \right)}^2}{{\left( {x - 2} \right)}^2}}}\)
\( {{y - x} \over {{x^2} - 4x + 4}} = {{\left( {y - x} \right){{\left( {x + 2} \right)}^2}} \over {{{\left( {x - 2} \right)}^2}{{\left( {x + 2} \right)}^2}}}\)