Đề kiểm tra 15 phút - Đề số 4 - Bài 3 - Chương 1 - Hình học 8

Cho tam giác ABC cân ở A. M là trung điểm của BC. Trên tia AM lấy N. BN cắt AC ở D, CN cắt AB ở E. Chứng minh BEDC là hình thang cân.

Lời giải

\(\Delta ABC\) cân có AM là đường trung tuyến (gt) \( \Rightarrow AM\) cũng là đường trung trực của BC.

N thuộc AM \( \Rightarrow NB = NC\) hay \(\Delta NBC\) cân tại N \( \Rightarrow \widehat {{B_1}} = \widehat {{C_1}}\)

Xét \(\Delta BEC\) và \(\Delta CDB\) có BC chung, \(\widehat B = \widehat C\) (gt)

\(\widehat {{C_1}} = \widehat {{B_1}}(cmt)\)

\(\Rightarrow \Delta BEC = \Delta CDB(g.c.g)\)

\( \Rightarrow EB = DC\)

Mà \(AB = AC(gt) \) \(\Rightarrow AB - EB = AC - DC\)

Hay AE = AD.

Từ đó \(\Delta AED\) cân tại A \( \Rightarrow \widehat {AED} = \widehat {ADE} =\dfrac {{{{180}^ \circ } - \widehat A} }{2}\)

Với \(\Delta ABC\) có: \(\widehat {ABC} = \widehat {ACB} = \dfrac{{{{180}^ \circ } - \widehat A} }{2} \) \(\Rightarrow \widehat {AED} = \widehat {ABC}\)

Do đó \(ED// BC\) (cặp góc đồng vị bằng nhau)

Lại có \(\widehat B = \widehat C\) (gt). Vậy BEDC là hình thang cân.


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”