Bài 104 trang 93 SBT toán 8 tập 1

Đề bài

Cho góc \(xOy\) và điểm \(A\) nằm trong góc đó.

\(a)\) Vẽ điểm \(B\) đối xứng với \(O\) qua \(A.\) Qua \(B\) kẻ đường thẳng song song với \(Ox,\) cắt \(Oy\) ở \(C.\) Gọi \(D\) là giao điểm của \(CA\) và \(Ox.\) Chứng minh rằng các điểm \(C\) và \(D\) đối xứng với nhau qua điểm \(A.\)

\(b)\) Từ đó suy ra cách dựng đường thẳng đi qua \(A,\) cắt \(Ox,\) \(Oy\) ở \(D,\) \(C\) sao cho \(A\) là trung điểm của \(CD.\)

Lời giải

\(a)\) Xét \(∆ OAD\) và \(∆ BAC:\)

\(OA = AB\) (tính chất đối xứng tâm)

\({\widehat A_1} = {\widehat A_2}\) (đối đỉnh)

\({\widehat O_1} = {\widehat B_1}\) (so le trong)

Do đó: \(∆ OAD = ∆ BAC \;\;(g.c.g)\)

\(⇒ AD = AC\)

Suy ra: \(C\) đối xứng với \(D\) qua tâm \(A.\)

\(b)\) Cách dựng :

-  Dựng \(B\) đối xứng với \(O\) qua tâm \(A\)

-  Qua \(B\) dựng đường thẳng song song \(Ox\) cắt \(Oy\) tại \(C.\)

-  Dựng tia \(CA\) cắt \(Ox\) tại \(D.\)

Ta có \(D\) là điểm cần dựng.

Chứng minh : như câu \(a)\)