Cho đường tròn (O) dây cung AB. Tiếp tuyến của (O) tại A và B cắt nhau tại M. Biết \(\widehat {AMB} = 50^\circ \).
a) Tính số đo cung AB.
b) Trên nửa mặt phẳng bờ OB ( không chứa điểm A), kẻ đườngthẳng d qua O và song song với BM, d cắt (O) tại D. Tính số đo cung AD.
Cho đường tròn (O; R). Một điểm A ở ngoài đường tròn sao cho OA = 2R. Vẽ các tiếp tuyến AB và AC đến (O) ( A , B là hai tiếp điểm).
a) Tính số đo các \(\widehat {AOB}\) và \(\widehat {BOC}\).
b) Tính số đo cung nhỏ và cung lớn BC.
Cho hai đường tròn (O) và (O') cắt nhau tại hai điểm phân biệt A và B. Biết rằng hai cung nhỏ AB của hai đường tròn này có số đo (độ) bằng nhau. Chứng minh rằng hai đường tròn (O) và (O') bằng nhau.
Cho ∆ABC đều. Trên nửa mặt phẳng bờ BC không chứa điểm A, vẽ nửa hình tròn đường kính BC. Lấy D thuộc nửa đường tròn sao cho cung CD = 60º. Gọi I là giao điểm của AD và BC. Chứng minh rằng: BI = 2CI.
Cho hai đường tròn (O; R) và (O’; R’) cắt nhau tại hai điểm A và B. Kẻ các đường kính AOC và AO’D. Hãy so sánh số đo (độ) của hai cung nhỏ BC và BD của hai đường tròn, biết rằng R > R’.
Cho ∆ABC đều. Trên nửa mặt phẳng bờ BC không chứa điểm A. Vẽ nửa đường tròn đường kính BC. Lấy D, E trên nửa đường tròn sao cho \(\overparen{ BD} = \overparen{ DE} = \overparen{ EC}\). Gọi I, J lần lượt là giao điểm của AD, AE với BC. Chứng minh rằng: \(BI = IJ = JC.\)
Cho tam giác ABC. Trên tia đối của tia AC lấy điểm D sao cho AD = AC. Vẽ đường tròn tâm O ngoại tiếp ∆BDC. Từ O lần lượt kẻ các đường vuông góc OH, OK với BC và BD ( H \( \in \) BC, K \( \in \) BD).
a) Chứng minh OH > OK.
b) So sánh hai cung nhỏ \(\overparen{ BD}\) và \(\overparen{ BC}.\)
Trên dây cung AB của một đường tròn (O), có hai điểm C và D chia dây này ba đoạn bằng nhau: \(AC = CD = DB.\) Các bán kính qua C và D cắt cung nhỏ AB lần lượt tại E và F. Chứng minh rằng các điểm E và F chia cung nhỏ AB thành ba cung : \(\overparen{AE}, \overparen{ EF}, \overparen{FB}\) thỏa mãn điều kiện: \(\overparen{AE} = \overparen{FB}<\overparen{EF}\)
Cho hai đường tròn (O) và (O’) bằng nhau và cắt nhau tại hai điểm phân biệt A và B. Kẻ các đường kính AOC và AO’D. Hãy so sánh các cung: \(\overparen{ BC}\) và \(\overparen{BD}\) của (O) và (O’).
Cho hai đường tròn đồng tâm (O; R) và (O; R’). Lấy điểm P trên (O; R) kẻ hai tia Px và Py không đi qua O và cắt hai đường tròn lần lượt tại A, B, C ( A, B \( \in \) ( O; R’)) và D, E, F ( E, D \( \in \) (O; R’)). Biết rằng AB < DE. Chứng minh rằng: \(\overparen{ PC}<\overparen{PF}\)
Cho ∆ABC ( AB < AC) nội tiếp trong đường tròn (O). Lấy D trên cạnh BC, AD cắt cung BC ở E. Chứng minh rằng :
a)\(\widehat {AEC} > \widehat {AEB}\)
b) \(AB. CD = AD . CE\)
Cho ∆ABC nội tiếp đường tròn (O). Tia phân giác của góc A cắt BC ở D và cắt đường tròn ở E. Chứng minh rằng:
a) \(AB . AC = AD . AE\)
b) \(B{E^2} = AE.DE.\)
Từ một điểm P nằm ngoài đường tròn (O; R), kẻ hai tiếp tuyến PA, PB đến (O) ( A, B là hai tiếp điểm). Trên dây AB lấy M bất kì. Qua M kẻ đường vuông góc với OM cắt PA tại S và PB tại Q. Chứng minh rằng: \(MS = MQ\).
Cho ∆ABC nội tiếp đường tròn (O). Một đường thẳng song song với tiếp tuyến tại A của đường tròn (O) cắt các cạnh AB, AC lần lượt ở D và E. Chứng tỏ ∆ABC và ∆ADE đồng dạng và \(AB.AD = AC.AE.\)
Cho đường tròn (O; R). Từ điểm P ở bên ngoài đường tròn vẽ tiếp tuyến PT và cát tuyến PAB với (O).
Chứng minh rằng : \(PT^2 = PA.PB = PO^2- R^2\).
Cho hai đường tròn (O) và (O’) tiếp xúc ngoài nhau tại P. Dây cung AB của một đường tròn kéo dài tiếp xúc với đường tròn kia tại C. AP cắt đường tròn (O’) tai P và D. Chứng minh : \(\widehat {BPC} = \widehat {CPD}\).
Hai đường tròn (O) và (O’) cắt nhau tại A và B. Qua A vẽ tiếp tuyến AM với (O’) và tiếp tuyến AN với (O) (\(M \in (O), N \in (O’)\)). Chứng minh rằng: \(AB^2= MB.NB\) và \(\widehat {MBA} = \widehat {NBA}\).
Cho góc nhọn AMB nội tiếp trong đường tròn (O). Trên nửa mặt phẳng bờ AB không chứa M, vẽ tia Ax sao cho \(\widehat {xAB} = \widehat {AMB}\). Chứng tỏ Ax là tiếp tuyến của (O).
Cho hai đường tròn (O) và (O’) tiếp xúc ngoài tại A. Lấy điểm B thuộc đường tròn (O). Qua B kẻ tiếp tuyến với (O) cắt (O’) ở hai điểm C và D. Gọi M là điểm chính giữa của cung CD. Chứng minh ∆ABM vuông tại A.
Từ một điểm P ở ngoài đường tròn (O), kẻ hai tiếp tuyến PA, PB đến đường tròn. Trên cung nhỏ AB lấy điểm C bất kì, kẻ các đường vuông góc CD, CE, CF lần lượt xuống các đường thẳng AB, BP, PA. Chứng minh rằng : \(\widehat {DCF} = \widehat {DCE}\) và \(\widehat {DFC} = \widehat {CDE}\).
Từ điểm P bên ngoài đường tròn (O, kẻ hai tiếp tuyến PA và PB đến (O). Đường thẳng song song với PA kẻ từ B cắt (O) tại C, PC cắt đường tròn (O) tại điểm thứ hai là E. Đường BE cắt PA tại M.
a) Chứng minh: \(PM^2= BM.ME\)
b) Chứng minh rằng M là trung điểm của PA.
Cho hai đường tròn (O; R) và (O; R’) với R > R’ cắt nhau ở A và B sao cho O và O’ ở về hai phía của AB. Vẽ tiếp tuyến AD với đường tròn (O). Qua B vẽ đường thẳng song song với AD cắt đường tròn (O’) tại E và cắt (O) tại F. Chứng minh ADEF là hình bình hành.
Cho hai đường tròn (O) và (O’) cắt nhau tại hai điểm A và B. Qua B vẽ cát tuyến cắt (O) tại C và (O’) tại D sao cho B nằm giữa C và D.
a) Chứng tỏ góc CAD có số đo không đổi khi cát tuyến quay quanh B.
b) Tiếp tuyến tại C của (O) và tại D của (O’) cắt nhau tại E. Chứng minh góc E của tam giác ECD có số đo không đổi.
Từ một điểm P nằm ngoài đường tròn (O) kẻ tiếp tuyến PT và cắt tuyến PAB đến (O) ( A nằm giữa P và B), phân giác góc ATB cắt AB tại C và (O) tại D.
a) Chứng minh: \(PT = PC\).
b) Chứng minh: \(BD^2= DC.DT\).
Lấy các điểm A, B, C, D theo thứ tự đó trên đường tròn (O) sao cho số đo các cung: cung AB, cung CD lần lượt là 60º, 120º.
a) Chứng minh rằng: \(AC \bot BD\).
b) Gọi I là giao điểm của đường thẳng AD và BC. Tính góc AIB.
Cho AB và AC là hai dây cung trong đường tròn (O). Gọi M là điểm chính giữa cảu cung AB, N là điểm chính giữa của cung AC. Các đường thẳng MN và AB cắt nhau tại E, MN và AC cắt nhau tại F. Chứng minh : \(AE = AF.\)
Cho đường tròn (O) đường kính AB. Một điểm C trên cung AB. Lấy trên dây AC một điểm D. Vẽ \(DE \bot AB\) tại E cắt đường tròn (O) tại P, Q ( D nằm giữa E và P ). Tiếp tuyến tai C của đường tròn cắt ED tại F. Chứng minh \(∆CDF\) cân.
Tam giác ABC cân tại A nội tiếp trong đường tròn (O). Lấy M thuộc cung nhỏ AB. Gọi P là giao điểm của AM với CB.
a) Chứng minh : \(\widehat {APC} = \widehat {ACM}.\)
b) Chứng minh \(∆AMB\) và \(∆ABP\) đồng dạng.
Tam giác ABC đều nội tiếp trong đường tròn (O), D là một điểm trên cung BC. Các đường thẳng AB và CD cắt nhau tại E, AC và BD cắt nhau tại F. Chứng minh rằng: \(AB^2= BE.CF\).
Từ điểm A nằm ngoài đường tròn (O). Kẻ hai cát tuyến ABC (B nằm giữa A và C) và AEF ( E nằm giữa A và F). Gọi I là giao điểm của BF và CE.
a) Chứng minh: \(\widehat A + \widehat {BIE} = 2\widehat {CBF}\).
b) Chứng minh: \(AE.AF = AB.AC\)
Cho đường tròn (O; R) đường kính AB. Lấy C thuộc đường tròn sao cho\(\widehat {COB} = 60^\circ \). Gọi I là điểm chính giữa của cung CB và M là giao điểm của OB và CI.
a) Tính \(\widehat {CMO}\).
b) Kẻ đường cao AH của ∆COM. Tính độ dài OM theo R.
Cho đường tròn (O). Từ điểm P bên ngoài đường tròn kẻ cát tuyến PAB và hai tiếp tuyến PM, PN với (O) (M thuộc cung nhỏ AB). Lấy D là điểm chính giữa của cung lớn AB, DM cắt AB tại I.
a)Chứng minh: \(PM = PI\).
b) Chứng minh: \(IA.NB = IB.NA\)
Cho đường tròn (O; R) đường kính BC. Lấy A là điểm chính giữa của cung BC. D là điểm di động trên cung AC, AD cắt BC tại E. Xác định vị trí điểm D để \(2AD + AE\) nhỏ nhất.
Cho tam giác ABC vuông tại A, cạnh BC cố định và I là giao điểm của ba đường phân giác trong. Chứng minh rằng I thuộc cung tròn cố định khi A thay đổi. Hãy chỉ ra cách vẽ cung tròn đó.
M là điểm chuyển động trên nửa đường tròn đường kính AB. Trên tia AM lấy điểm N sao cho AN = BM. Tìm quỹ tích các điểm N.
Cho đường tròn (O) đường kính AB cố định. M là một điểm di động trên đường tròn. Nối MA, MB, trên tia đối của tia MA lấy điểm I sao cho MI = 2MB. Tìm tập hợp các điểm I.
Cho hình vuông ABCD. Trên các cạnh BC, CD lần lượt lấy các điểm E và F sao cho \(\widehat {EAF} = 45^\circ \). Gọi P và Q theo thứ tự là giao điểm của các đoạn thẳng AE, AF với đường chéo BD. Chứng minh rằng ∆AQE vuông cân.
Cho ∆ABC đều nội tiếp trong đường tròn (O). Một điểm D di động trên cung nhỏ BC. Trên đoạn DA lấy DK = DB.
a) Chứng tỏ ∆BDK đều.
b) Khi D di chuyển trên cung BC thì K chuyển động trên đường nào ?
Cho đường tròn (O) đường kính AB. Từ A kẻ hai đường thẳng cắt đường tròn tại C và D, cắt tiếp tuyến của đường tròn vẽ qua B tại E và F.
a) Chứng minh các điểm C, E, F, D cùng thuộc một đường tròn.
b) Chứng minh: \(FB^2= FA.FD\).
Cho tam giác ABC nội tiếp trong đường tròn (O), xy là tiếp tuyến tại A của đường tròn. Một đường thẳng song song với xy cắt AB, AC lần lượt tại D và E. Chứng minh tứ giác BDEC nội tiếp.
Tam giác ABC có ba góc nhọn nội tiếp trong đường tròn (O). Đường tròn đường kính BC cắt AB, AC lần lượt tại E và F. BF, CE cắt nhau tại H.
a) Chứng minh H là trực tâm của tam giác ABC.
b) Gọi K là điểm đối xứng với H qua BC. Chứng minh tứ giác ABKC nội tiếp.
Cho tam giác ABC. Gọi I là giao điểm của các đường phân giác trong của hai góc B và C và J là giao điểm các phân giác ngoài của hai góc đó.
a) Chứng minh BICJ là tứ giác nội tiếp.
b) Chứng minh rằng ba điểm A, I, J thẳng hàng.
Từ điểm M ở ngoài đường tròn (O), kẻ cát tuyến MAB ( A nằm giữa hai điểm M và B) và các tiếp tuyến MC, MD. Gọi H là giao điểm của OM và CD.
a) Chứng minh : MC2 = MA.MB.
b) Chứng minh tứ giác AHOB nội tiếp.
Cho hai đường tròn (O) và (O’) cắt nhau tại hai điểm A và B. Gọi M là điểm tùy ý trên đường thẳng AB, nằm ngoài đoạn AB. Vẽ qua M hai cát tuyến MCD và MC’D’ với (O) và (O’). Chứng minh tứ giác CDD’C’ nội tiếp.
Cho góc \(\widehat {xAy}\) và đường tròn (O tiếp xúc với Ax và Ay tại B và C. Trên đoạn thẳng BC lấy điểm M ( khác B và C). Đường thẳng vuông góc với OM tại M cắt Ax, Ay lần lượt tại D và E. Chứng minh các điểm A, D, O, E cùng nằm trên một đường tròn.
Trên các cạnh BC và CD của hình vuông ABCD lấy các điểm E và F sao cho
\(\widehat {EAF} = 45^\circ \) . Các đoạn thẳng AE, AF cắt BD theo thứ tự ở H và K. Chứng minh tứ giác EHKF nội tiếp.
M là một điểm thuộc cung nhỏ BC. Tiếp tuyến tại M cắt AB, AC lần lượt ở D và E. Gọi I và K lần lượt là giao điểm của OD, OE với BC. Chứng minh rằng tứ giác OBDK nội tiếp.
Cho tam giác ABC nội tiếp trong đường tròn (O). Từ một điểm bất kì trên đường tròn hạ các đường vuông góc xuống các cạnh. Chứng minh rằng chân ba đường vuông góc này thẳng hàng (đường thẳng Sim-Sơn).
Cho đường tròn (O; R). Vẽ hình vuông ABCD nội tiếp và tính cạnh của hình vuông theo R.
Cho đường tròn (O; R). Vẽ tam giác đều nội tiếp và hãy tính cạnh của tam giác theo R.
Cho tam giác đều ngoại tiếp đường tròn (I; r = 2cm).
a) Tính cạnh của tam giác đều.
b) Tính bán kính của đường tròn ngoại tiếp tam giác đó.
Cho lục giác đều ABCDEF nội tiếp đường tròn (O; R). Hãy xác định tâm và bán kính của đường tròn nội tiếp lục giác theo R.
Tính cạnh bát giác đều nội tiếp trong đường tròn (O; R).
Cho tam giác cân ABC có \(\widehat B = 120^\circ \), \(AC = 6cm\). Tính độ dài đường tròn ngoại tiếp tam giác.
Cho đường tròn (O) và dây cung AB = 6cm. Gọi D là trung điểm của dây AB, đường kính CE qua D biết CD = 9cm. Tính độ dài đường tròn (O).
Cho ba điểm A, B, C liên tiếp trên một đường thẳng. Chứng minh rằng độ dài của nửa đường tròn đường kính AC bằng tổng các độ dài của hai nửa đường tròn có đường kính AB và BC.
Cho đường tròn (O; R).
a) Tính AOB biết độ dài cung AB là \(\dfrac{{5\pi R} }{ 6}.\)
b) Lấy một điểm C trên cung lớn AB sao cho \(\widehat {BAC} = 45^\circ \). Tính độ dài các cung nhỏ AC và BC.
Gọi M là một điểm nằm trên đường tròn (O). Vẽ đường tròn (O’) đường kính OM. Bán kính OA của (O) cắt (O’) tại B. Chứng minh rằng hai cung MA và MB bằng nhau.
Tính diện tích hình tròn nội tiếp một tam giác đều có cạnh là a.
Tính theo a diện tích hình tròn (O).
a) Biết độ dài cạnh của hình vuông nội tiếp đường tròn (O) là a.
b) Biết độ dài cạnh của tam giác đều nội tiếp của đường tròn (O) là a.
Hình viên phân là phần hình tròn bao gồm giữa một cung và dây trước cung ấy. Hãy tính diện tích hình viên phân AmB theo R. Biết góc ở tâm \(\widehat {AOB} = 120^\circ \) và bán kính hình tròn là R.
Cho ∆ABC đều cạnh A, trên nửa mặt phẳng bờ BC chứa điểm A, vẽ nửa đường tròn đường kính BC. Hãy tính diện tích phần hình tròn nằm ngoài ở miền ngoài của tam giác.
Cho hình tròn (O; R) hai đường kính AB và CD vuông góc với nhau. Dựng cung tròn tâm A bán kính AC. Tính diện tích hình quạt ACD và hình “ trăng khuyết” ( tô đậm).