Đề kiểm 15 phút - Đề số 4 - Bài 3 - Chương 4 - Đại số 9

Bài 1: Tìm m để phương trình sau vô nghiệm : \({x^2} + 2x - m = 0.\)

Bài 2: Giải phương trình : \({x^2} - 5x - 6 = 0.\)

Bài 3: Tìm p, q để hai phương trình sau tương đương:

\({x^2} - 4 = 0\) và \({x^2} + px + q = 0.\)

Lời giải

Bài 1: Ta có : \({x^2} + 2x - m = 0\)

\(\Leftrightarrow {x^2} + 2x + 1 - 1 - m = 0\)

\( \Leftrightarrow {\left( {x + 1} \right)^2} = m + 1\)

Phương trình vô nghiệm \( \Leftrightarrow m + 1 < 0 \Leftrightarrow m <  - 1.\)

Nhận xét : Nếu \(m + 1 ≥ − 1\), phương trình có nghiệm.

Bài 2: \({x^2} - 5x - 6 = 0\)

\(\Leftrightarrow {x^2} - 2.{5 \over 2}x + {{25} \over 4} - {{25} \over 4} - 6 = 0\)

\( \Leftrightarrow {\left( {x - {5 \over 2}} \right)^2} = {{49} \over 4} \Leftrightarrow \left| {x - {5 \over 2}} \right| = {7 \over 2}\)

\( \Leftrightarrow \left[ \matrix{  x - {5 \over 2} = {7 \over 2} \hfill \cr  x - {5 \over 2} =  - {7 \over 2} \hfill \cr}  \right. \Leftrightarrow \left[ \matrix{  x = 6 \hfill \cr  x =  - 1. \hfill \cr}  \right.\)

Bài 3: Ta có : \({x^2} - 4 = 0 \Leftrightarrow x =  \pm 2\)

Nếu \(x =  \pm 2\) là nghiệm của phương trình \({x^2} + px + q = 0\left( * \right)\), ta có hệ :

\(\left\{ \matrix{  4 + 2p + q = 0 \hfill \cr  4 - 2p + q = 0 \hfill \cr}  \right. \Leftrightarrow \left\{ \matrix{  p = 0 \hfill \cr  q =  - 4 \hfill \cr}  \right.\)

Vậy phương trình (*) trở thành \({x^2} - 4 = 0\)( đó chính là phương trình thứ nhất và hiển nhiên có hai nghiệm \(x =  \pm 2).\)

Vậy \(p=0; q=-4\)


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”