Bài 115 trang 94 SBT toán 8 tập 1

Đề bài

Cho tam giác \(ABC\) cân tại \(A,\) các đường trung tuyến \(BM,\, CN\) cắt nhau tại \(G.\) Gọi \(D\) là điểm đối xứng với \(G\) qua \(M,\) gọi \(E\) là điểm đối xứng với \(G\) qua \(N.\) Tứ giác \(BEDC\) là hình gì ? Vì sao ?

Lời giải

Ta có: \(G\) là trọng tâm của \(∆ ABC\)

\(⇒ GB = 2GM\) (tính chất đường trung tuyến)

\(GC = 2GN\) (tính chất đường trung tuyến)

Điểm \(D\) đối xứng với điểm \(G\) qua điểm \(M\)

\(⇒ MG = MD\) hay \(GD = 2 GM\)

Suy ra: \(GD = GB\) (1)

Điểm \(E\) đối xứng với điểm \(G\) qua điểm \(N\)

\(⇒ NG = NE\) hay \(GE = 2 GN\)

Suy ra: \(GC = GE\) (2)

Từ (1) và (2) suy ra tứ giác \(BCDE\) là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm mỗi đường)

Xét \(∆ BCM\) và \(∆ CBN:\)

\(BC\) cạnh chung

\(\widehat {BCM} = \widehat {CBN}\) (tính chất tam giác cân)

\(CM = BN\) ( vì \(AB = AC\))

Do đó: \(∆ BCM = ∆ CBN\, (c.g.c)\)

\( \Rightarrow {\widehat B_1} = {\widehat C_1}\) \(⇒ ∆ GBC\) cân tại \(G\) \(⇒ GB = GC ⇒ BD = CE\)

Hình bình hành \(BCDE\) có hai đường chéo bằng nhau là hình chữ nhật.


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”