Ta có: \(DB = HD + HB = 2 + 6 = 8\,(cm)\)
\(AC = DB\) (tính chất hình chữ nhật)
\(OA = OB = OC = OD = \dfrac{1}{2} BD = 4\) \((cm)\)
\(OD = OH + HD\)
\(⇒ OH = OD – HD = 4 – 2 = 2\,(cm)\)
\(AH ⊥ OD\) có \(HO = HD = 2\,(cm)\)
Suy ra: \(∆ ADO\) cân tại \(A\)
\(⇒ AD = AO = 4\,(cm)\)
Trong tam giác vuông \(ABD\) có \(\widehat {BAD} = {90^0}\)
\(B{D^2} = A{B^2} + A{D^2}\) (định lý Pi-ta-go) \( \Rightarrow A{B^2} = B{D^2} - A{D^2}\)
\(AB = \sqrt {B{D^2} - A{D^2}} \) \(= \sqrt {{8^2} - {4^2}} = \sqrt {48} \approx 7\) \((cm)\)