Trong các mệnh đề sau, mệnh đề nào đúng?
a. Hai mặt phẳng phân biệt cùng song song với một đường thẳng thì song song với nhau
b. Hai mặt phẳng phân biệt cùng song song với một mặt phẳng thì song song với nhau
c. Nếu hai mặt phẳng song song thì mọi đường thẳng nằm trên một mặt phẳng đều song song với mặt phẳng còn lại.
d. Nếu hai mặt phẳng song song thì mỗi đường thẳng nằm trên một mặt phẳng này đều song song với mọi đường thẳng nằm trên mặt phẳng kia.
e. Nếu hai mặt phẳng phân biệt lần lượt đi qua hai đường thẳng song song thì song song với nhau.
f. Nếu một đường thẳng cắt một trong hai mặt phẳng song song thì cắt mặt phẳng còn lại.
Trong các mệnh đề sau, mệnh đề nào đúng?
a. Hình hộp là một hình lăng trụ
b. Hình lăng trụ có tất cả các cạnh song song
c. Hình lăng trụ có tất cả các mặt bên bằng nhau
d. Hình lăng trụ có các mặt bên là hình bình hành
e. Hình hộp có các mặt đối diện bằng nhau
Cho hai đường thẳng chéo nhau. Chứng minh rằng có đúng hai mặt phẳng song song với nhau lần lượt đi qua hai đường thẳng đó
Cho hai đường thẳng chéo nhau a và b lần lượt nằm trên hai mặt phẳng song song (P) và (Q). Chứng minh rằng nếu điểm M không nằm trên (P) và không nằm trên (Q) thì có duy nhất một đường thẳng đi qua M cắt cả a và b
Trong mặt phẳng (P) cho hình bình hành ABCD. Qua A, B, C, D lần lượt vẽ bốn đường thẳng a, b, c, d đôi một song song với nhau và không nằm trên (P). Một mặt phẳng cắt a, b, c, d lần lượt tại bốn điểm A’, B’, C’, D’. Chứng minh rằng A’B’C’D’ là hình bình hành
Cho tứ diện ABCD. Gọi M là trung điểm của AB. Hỏi mặt phẳng (P) qua điểm M, song song với cả AD và BC có đi qua trung điểm N của CD không ? Tại sao ?
Cho hai điểm M, N lần lượt thay đổi trên hai mặt phẳng song song (P) và (Q). Tìm tập hợp các điểm I thuộc đoạn thẳng MN sao cho \({{IM} \over {IN}} = k,k \ne 0\)cho trước
Cho hình lăng trụ đứng tam giác ABC.A’B’C’. Gọi H là trung điểm của cạnh A’B’.
a. Chứng minh rằng đường thẳng CB’ song song với mp(AHC’)
b. Tìm giao tuyến d của hai mặt phẳng (AB’C’) và (A’BC). Chứng minh rằng d song song với mp(BB’C’C)
c. Xác định thiết diện của hình lăng trụ ABC.A’B’C’khi cắt bởi mp(H , d)
Cho hình hộp ABCD.A’B’C’D’. Chứng minh rẳng
a. mp(BDA’) // mp(B’D’C)
b.Đường chéo AC’ đi qua các trọng tâm G1, G2 của hai tam giác BDA’ và B’D’C
c. G1 và G2 chia đoạn AC’ thành ba phần bằng nhau
d. Các trung điểm của sáu cạnh BC, CD, DD’, D’A’, A’B’,B’B cùng nằm trên một mặt phẳng
Chứng minh rẳng tổng bình phương tất cả các đường chéo của một hình hộp bằng tổng bình
phương tất cả các cạnh của hình hộp đó
Cho hình chóp cụt ABC.A’B’C’ có đáy lớn ABC và các cạnh bên AA’, BB’, CC’. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, BC, CA và M’, N’, P’ lần lượt là trung điểm của các cạnh A’B’, B’C’, C’A’. Chứng minh MNP.M’N’P’ là hình chóp cụt